Marine Solar Panels, Complete Solar Systems, and Lithium Iron Batteries
  • Home
  • Marine Solar Panels
    • Marine Solar Panels
    • Flexible Marine Solar Panels
    • Semi-Rigid Walk On Marine Solar Panels
    • Rigid Marine Solar Panels
    • Stern Rail Mounted Solar Panels
    • Kits - Solar System Kits
    • Van Solar Panels
    • Portable Solar Panels
  • Kits&Electronics
    • Kits - Solar System Kits >
      • Flexible Solar Panel Kits
      • Semi-rigid Solar Panel Kits
      • Rigid Solar Panel Kits
      • Auxiliary Solar Panel Kit
      • Portable Solar Panels
    • Solar Controllers & Electrical >
      • MPPT DuoRacer Dual Output Series
      • MPPT Tracer Series
      • MPPT Victron Smart Solar Series
      • MPPT Xtra-N Series
      • PWM Duo Dual Output Controller
      • Electrical Components
    • Mounting Systems >
      • Flexible Panel Mounting Systems
      • Semi-rigid Panel Mounting System
      • Rigid Panel Mounting System - Top Of Pole
    • Inverters
    • Outboard Motor Lifting Crane
    • Solar Water Heating System For Boats
    • Visit Our Store
  • Lithium Batteries
    • LiFePO4 Lithium Batteries
    • Portable Power Stations
  • Reviews & Installations
    • Reviews/Customer Comments
    • Gallery of Installations
  • System Design
  • Support
    • FAQ
    • Solar System Design & Installation
    • Manuals & Information
    • Solar System Installation Pointers
    • Troubleshooting
    • Contact Us
    • Solar System Installers
    • Battery Exchange Plus
    • Handy Products We Don't Carry
    • Freight Forwarders for International Shipping
    • About us
    • Call (248) 705-8337
    • Return Policy
    • Shipping Rates
    • Marine Solar Panel Sizing Calculator Tool
  • Blog

Performance of Our 120 Watt Solar Panel with Pole Mount

8/25/2016

0 Comments

 
Picture120 Watt Solar Panel on a Pole Mounting System with Water Heater and Crane Options
This year we tested our new 120 Watt SunPower cell solar panel with our integrated water heating system on a 5 week cruise in Northern Lake Huron at a latitude of about 46 degrees.  We used an EP 20 amp MPPT Controller.  A 10 amp controller would have been sufficient but we wanted extra capacity so we could plug in an auxiliary 100 watt semi-flexible panel as a backup if we needed additional power because of a series of cloudy days. Plugging in an extra panel is simple using the MC4 connectors and an MC4 T-branch connector. We had mostly sunny days so we didn't need additional power beyond what the 120 watt panel provided.  The weather was awesome!  The 120 watt panel was mounted using our CMP pole mounting system so I could tilt and rotate the panel to achieve optimum sun angle.  I set the sun angle once and rotated the panel three times a day (morning, midday, evening) and figure I got about 30% more performance over a fixed horizontally mounted panel.

Operating statistics:

Our power usage averaged approximately 70 amp hours or 850 watt hours in a 24 hour period.  Our current draw was from a refrigerator/freezer running 24/7, our LED lights in the evening, cell phone chargers, laptop computer several hours a day and our radios and instruments during the day.  Our windlass is only run when the engine is running so we don't include it in our power consumption calculation as the alternator quickly makes up for its power usage.  We have a 75 amp Balmar alternator with a smart regulator.  Our house bank consists of 3 flooded cell batteries giving us a total capacity of 330 amp hours.  We started the engine to move anchorages about every three days.

Results and findings:

1. Our battery bank was fully charged by 2 PM most sunny or mostly sunny days when at anchor.  This is in contrast to 12-1 PM in past years using our 150 or 160 watt panels on poles.
2. The EP Tracer BN MPPT controller with the remote display proved to be an outstanding piece of equipment.  It was simple to program, easy to read, collected the appropriate data and was very efficient.  It was exciting (I get excited about these things) to see 8+ amps being poured into the battery bank in the morning.  It would be frustrating to see it only outputting and amp or two in the afternoon in full sun but then you realize it is doing its job.  It fully charged the batteries in the morning and was in float mode topping off the battery bank in the afternoon.
3. Rotating the panel during the day, especially in the morning, significantly increased the power generation of the panel.
4. Our weather was so sunny and the panel performed so well we had no reason to plug in the auxiliary 100 watt flexible panel using an MC4 T-branch for extra charging power.  I plugged it in one morning just to confirm the configuration would work and was easy to do.  It worked well and brought the charging amps to well over 12 amps.
5. The data gathered confirmed that this panel configuration supplied all the power we needed and has excess capacity to catch up on battery charge from a string of cloudy days.
6. The panel was affected by shading as would be expected.  Occasionally the panel was shaded by the back stay or the mast.  While the shading was minimal, it degraded the performance by up to 40%.

Data:
                                                  At anchor   Motor         Sunny to         Cloudy to
                                                                                 Mostly Sunny  Mostly Cloudy

Average watt hrs per day                  740        540             650                 290
Average amp hours per day                 57          45               50                   22
​Maximum watt output in 24 hours    960        630             960                 540
Minimum watt output in 24 hours        200         200             420                 170

Observations:
1. The minimum watt hour output doesn't mean much because it is dependent on both the cloud cover and the state of charge of the bank as a result of alternator charging,
2. The maximum watt hours per day of 960 is not the maximum output capacity of the system in a 24 hour period because the batteries were charged by 2 PM so the controller shut down the charge from the panel.  A higher drain on the house battery bank would have resulted in this number being higher.
3. Average amp hours per day is computed by dividing the watt hours by 13 volts.  This is a ballpark calculation.
4. This configuration proved to have plenty of capacity for our cruising needs even without using the auxiliary solar panel.  We have not used shore power to charge our battery bank for the entire summer.

Solar Water Heater:

We installed our new solar water heating system.  It consists of a heat collector or heat exchanger mounted on the back of the solar panel, and a circulating pump.  See our earlier blog for design considerations.  The pump circulates water from the water heater through the heat exchanger on the panel.  We used the same configuration on our 150 watt panel last year.

Results:

On sunny days at anchor we had warm water for showers and dish washing.  The water temperature in our 8 gallon hot water tank would warm from 60 degrees to about 105 degrees in 2-3 hours on a sunny calm day.  This was slower than the system we tested last year on our larger panel but it was perfectly adequate to meet our needs.  As expected, we confirmed that strong winds tend to cool the panel and reduce the heating efficiency as do clouds.  Overall, the water heating system cools the surface of the panel by at least 20 degrees.  This increases the efficiency of the panel since solar panel performance degrades as they are heated by the sun. Insulating the tubing running between the heat exchanger and the water heater significantly increased the efficiency of the system.  In conclusion, the radiant energy water heating system works well on sunny days with both our larger and our standard sized panels. See our product section or read our earlier blog for details.

0 Comments

Adding extra solar power only when you need it

6/13/2016

7 Comments

 
We have been testing our 150 and 160 watt solar panels for the past few years on extended cruises.  While at anchor, on a sunny day, our battery banks are usually topped off by about 1 PM.  We run our refrigerator/freezer 24/7. So why not use a smaller 100 or 120 watt  solar panel and plug in a flexible panel on the rare occasion we need more charging power?  This is what we will be testing while cruising this summer.  It's a simple arrangement.  We will carry a 100 watt flexible solar panel under a bunk cushion.  If we need extra charging power we will simply plug it in using a T-branch connector at our pole mounted 120 watt panel and secure the flexible panel to the bimini top.  That gives us 220 watts of power through our 20 amp MPPT controller.  Several of our customers have reported using this configuration and are very satisfied with it.  I'll report our results at the end of the season.  Now, gotta go sailing and start testing.
Picture
7 Comments

Finally, a Flexible Marine Solar Panel with High Efficiency

5/16/2014

1 Comment

 
Picture100 Watt Flexible Solar Panel
When our supplier told me they had a new high output marine solar panel that was flexible I was skeptical.  The specifications seemed just to good to be true.  So I ordered some to test.  Well, I was pleasantly surprised.

These panels are very well constructed and they have a power generation comparable to our hard panels.  These panels can be flexed to 30 degrees so can conform to most boat curved surfaces.  The 100+ watt panels have an electrical box on the front (not shown in the picture) which contains two blocking diodes.  The 50 watt panel has one blocking diode.  The base material is very sturdy and strong.  Each panel has grommets for attaching the panel.  

I have tested the output of these panels under various weather conditions and their susceptibility to shading.  Below is a quick comparison of output of our three mid-range panels laying flat at mid day on a mostly sunny day measured with a meter:

                                                      Flexible 100 watt         Rigid 105 watt          Rigid 100 watt
                                                      Monocrystalline           Monocrystalline        Polycrystalline

Short Circuit Current (Isc)                      5.48 amps                   5.50 amps                5.26 amps
Open Circuit Voltage (Voc)                    19.2 volts                    19.7 volts                  20.5 volts
Computed Power (not rated power)         105 watts                    108 watts                 108 watts

Additional information is available on our solar panel page.


1 Comment

New 140 Watt Solar Panel for 2012

4/16/2012

0 Comments

 
We haven't been just sitting around waiting to the water to soften up here in the Midwest.  We've been working on enhancing our products and finding the latest and greatest technology.

Our 90 watt solar panel had been such a popular high performer that we went back to our supplier to see if they could provide us with a higher wattage panel for our top-of-pole mounting system.  We specified a solar panel that was Class A-9 quality polycrystalline with an efficiency of 16.5% efficiency or higher, sealed and robust for the rigors of marine use, a nearly square shape for our top-of-pole application, and at a cost our customers could afford.  They met our request and came up with a 140 watt polycrystalline high performance panel that measures roughly 39 X 39.5 inches and uses the same design and construction technology as our 90 watt panel.  We have them on order with an expected delivery date of early May. 

We anticipate that the 140 watt panel will perform about as well as our popular 130 watt monocrystalline panel in full sun and outperform our 130 on a cloudy day or when partially shaded.  This will make the panel ideal for northern climates where those sunny days just don't happen every day.  We plan on publishing a complete analysis by mid to late June.

Also stay tuned for our introduction of several new LED lights.
0 Comments

    Categories

    All
    130 Watt Solar Panel
    140 Watt Solar Panel
    150 Watt Solar Panel
    160 Watt Solar Panel
    Choosing A Solar Panel
    Crane
    Flexible Solar Panel
    Hoist
    Led Cabin Lighting
    Lifepo4 Marine Batteries
    Lift
    Lifting Davit
    Magnet Mounts
    Marine Led Lamps
    Marine Solar Panel
    Pole Mount
    Selecting The Right Leds
    Solar Controller
    Solar Generation
    Solar Generation Worksheet
    Solar Panel
    Solar Panel Controller
    Solar Panel Electrical
    Solar Panel Mount
    Solar Panel Mounting Kit
    Solar Panel Output
    Solar Panel Performance
    Solar Panel Pole Mount
    Solar Panels
    Solar Panel Size
    Solar Panel Wind Resistance
    Solar Water Heating System
    Top Of Pole Solar Panel
    Top-of-pole Solar Panel
    Top-of-pole Solar Panel Mount
    Wiring A Marine Solar System
    Wiring For A Solar Panel

    Author

    Thomas Trimmer has been cruising with his Ericson 38 sailboat on the Great Lakes for over 20 years.  He has pioneered the use of solar energy for wilderness cruising.  He is continually designing and building equipment to simplify and enhance the cruising experience.

    Archives

    March 2022
    November 2021
    April 2021
    October 2020
    September 2020
    October 2019
    August 2019
    February 2019
    September 2018
    June 2018
    April 2018
    December 2017
    October 2017
    June 2017
    May 2017
    September 2016
    August 2016
    June 2016
    May 2016
    April 2016
    March 2016
    December 2015
    October 2015
    August 2015
    April 2015
    October 2014
    May 2014
    October 2013
    August 2012
    May 2012
    April 2012
    September 2011
    August 2011
    June 2011
    April 2011
    March 2011
    December 2010
    October 2010
    August 2010
    August 2009
    March 2009
    January 2009

    RSS Feed

Efficiently Powering Your Vessel/Van. Call/email/chat any time, we're happy to help you work through designing your solar system.
Home Page  Solar Panels  Mounting Kits   Product Page  Marine Solar Systems   Gallery of Installations    Customer Comments    Contact Us
Call 248 705-8337 or email [email protected]
Article On How To Size Your Solar Panels For Your Boat
Customer Reviews   ​Return Policy  Privacy Policy Shipping Times/Rates
  • Home
  • Marine Solar Panels
    • Marine Solar Panels
    • Flexible Marine Solar Panels
    • Semi-Rigid Walk On Marine Solar Panels
    • Rigid Marine Solar Panels
    • Stern Rail Mounted Solar Panels
    • Kits - Solar System Kits
    • Van Solar Panels
    • Portable Solar Panels
  • Kits&Electronics
    • Kits - Solar System Kits >
      • Flexible Solar Panel Kits
      • Semi-rigid Solar Panel Kits
      • Rigid Solar Panel Kits
      • Auxiliary Solar Panel Kit
      • Portable Solar Panels
    • Solar Controllers & Electrical >
      • MPPT DuoRacer Dual Output Series
      • MPPT Tracer Series
      • MPPT Victron Smart Solar Series
      • MPPT Xtra-N Series
      • PWM Duo Dual Output Controller
      • Electrical Components
    • Mounting Systems >
      • Flexible Panel Mounting Systems
      • Semi-rigid Panel Mounting System
      • Rigid Panel Mounting System - Top Of Pole
    • Inverters
    • Outboard Motor Lifting Crane
    • Solar Water Heating System For Boats
    • Visit Our Store
  • Lithium Batteries
    • LiFePO4 Lithium Batteries
    • Portable Power Stations
  • Reviews & Installations
    • Reviews/Customer Comments
    • Gallery of Installations
  • System Design
  • Support
    • FAQ
    • Solar System Design & Installation
    • Manuals & Information
    • Solar System Installation Pointers
    • Troubleshooting
    • Contact Us
    • Solar System Installers
    • Battery Exchange Plus
    • Handy Products We Don't Carry
    • Freight Forwarders for International Shipping
    • About us
    • Call (248) 705-8337
    • Return Policy
    • Shipping Rates
    • Marine Solar Panel Sizing Calculator Tool
  • Blog