Selecting the Proper Solar System for Your Boat

> Tom Trimmer Custom Marine Products

Introduction: I Am a Cruising Sailor -Having Sufficient Power Onboard is Important

Refrigeration started my quest for POWER

Custom Marine Products 2016

Topics for Discussion

- Introduction to PV solar panels
- Introduction to solar controllers
- What is a balanced solar system?
- Designing your solar system
 - A case study
- Selecting the proper equipment
- Installation ideas
- Q&A

Slides at: custommarineproducts.com Support, Manuals & Info

Components of a PV Solar System

Custom Marine Products 2016

A Few things to Know About PV Solar Panels

Monocrystalline or Polycrystalline?

Grade A or B or C?

Rigid or Semi-flexible?

Commercial or Marine?

Monocrystalline or Polycrystalline?

Monocrystalline

- Generally higher efficiency solar cells 15 % to 22%
- Generally higher output than polycrystalline in full sun
- More expensive than polycrystalline

Polycrystalline

- Cell efficiency typically 13% to 16%
- Generally less sensitive to shading and clouds than monocrystalline
- Less expensive that monocrystalline

Monocrystalline or Polycrystalline?

Monocrystalline

- Generally higher efficiency solar cells 15 % to 22%
- Generally higher output than polycrystalline in full sun
- More expensive than polycrystalline

Polycrystalline

- Cell efficiency typically 13% to 16%
- Generally less sensitive to shading and clouds than monocrystalline
- Less expensive that monocrystalline

Note: Efficiency of thin-film panels is only 7% - 12%

All solar cells are not created equal

- Cells are graded under a standard artificial light and sorted by output.
- The distribution of performance is a Bell Curve with most cells being a B grade.
- Grade A will typically perform above rating in full sun light.
- Grade B is typically used for residential and solar farms.
- Grade A+ is desirable on a boat where space is limited.

Rigid or Semi-flexible

New SunPower semi-flexible panel performance is comparable to rigid panels

Rigid panels

- Have a life of at least 15 years robust
- Excellent for pole and davit mounting
 Semi-flexible panels
- Have a life span of at least 7 years
- Excellent for bimini and cabin top mounting
- Light weight
- Can be walked on
- Sensitive to shading
 - Expensive

Rigid or Semi-flexible

New SunPower semi-flexible panel performance is comparable to rigid panels

Rigid panels

- Have a life of at least 15 years robust
- Excellent for pole and davit mounting

Semi-flexible panels

- Have a life span of at least 8 years
- Excellent for bimini and cabin top mounting
- Light weight
- Can be walked on
- Sensitive to shading
- Expensive

Custom Marine Products 2016

How is a Marine Solar Panel Different from a Commercial Solar Panel?

Marine Solar Panel

- Junction box is filled with inert silicone to prevent corrosion
- Rigid panels have strong frames and extra sealants
- Panels have highest possible output performance Grade A+ cells
- Output compatible with 12 or 24 volt battery bank systems
 Commercial Solar Panel
- Junction box not sealed
- Frames designed for rack mounting
- Output typically 30+ volts
- Panel cells are typically Grade B or B+

How is a Marine Solar Panel Different from a Commercial Solar Panel?

Marine Solar Panel

- Junction box is filled with inert silicone to prevent corrosion
- Rigid panels have strong frames and extra sealants
- Panels have highest possible output performance Grade A+ cells
- Output compatible with 12 or 24 volt battery bank systems Commercial Solar Panel
- Junction box components not sealed
- Frames designed for rack mounting
- Output typically 30+ volts
- Panel cells are typically Grade B or B+

Wiring Multiple Solar Panels

100 Watt, 18 Volt, 5.6 Amp

18 Volts **11.1** Amps

Custom Marine Products 2016

A Few Things to Know About Solar Controllers

The purpose of a solar controller is to:

- Regulate the amount of power going to the battery bank
- Prevent battery bank overcharging and overheating
- Prevent solar panels from absorbing power at night

There Are Two Types of Solar Controllers

(PWM) Pulse Width Modulation

- Pulse width modulation provides efficient battery charging
- Streams full power to battery bank when bank is low
- Includes float and equalization modes battery health
- Less expensive than MPPT controllers

(MPPT) Maximum Power Point Tracking

- Excellent for use with commercial solar panels (usually above 30 volts)
- Consumes more power than typical PWM controller
- More expensive than PWM controllers
- Reduces voltage to 14 volts and increases amperage
 Pw = V * I
- Of little value for panels rated under 20 volts and for small solar arrays (under 200 watts).

There Are Two Types of Solar Controllers

(PWM) Pulse Width Modulation

- Pulse width modulation provides efficient battery charging
- Streams full power to battery bank when bank is low
- Includes float and equalization modes battery health
- Less expensive than MPPT controllers

(MPPT) Maximum Power Point Tracking

- Excellent for use with commercial solar panels (usually above 30 volts)
- Reduces voltage to 14 volts and increases amperage
 Pw = V * I
- Consumes more power than typical PWM controller
- More expensive than PWM controllers
- Of limited value for panels rated under 20 volts and for small solar arrays (under 200 watts).

Maximum Power Point Tracking Technology

Input Voltage (Vmpp) * Input Current (Ipv) = Battery Voltage (Vbat) * Battery Current (Ibat)

18	*	11.1 =	14 *	14.3
36	*	5.6 =	14 *	14.3

At 100% conversion efficiency

Maximum Power Point Curve

Custom Marine Products 2016

Maximum Power Point Tracking Technology Impact of Shading

Multi - MPP

Battery Charging Stage Curve

A Balanced System

- Water in
- Size of the bucket
- Water consumed

A Balanced System

Sizing Your Battery Bank

Battery capacity is measured in Amp Hours

A limited capacity battery bank

- Unable to store all the power your solar panel produces
- No reserve for cloudy days
- Must always be monitored because continually stressed

Your battery bank should have the capacity to support your boat's power requirements for at least 24 hours

1. Determine daily power consumption

.....

- 1. Determine daily power consumption
- 2. Determine solar generation capacity needed

2

- 1. Determine daily power consumption
- 2. Determine solar generation capacity needed
- 3. Determine optimum size of your battery bank

2

Our Case Study Boat

Custom Marine Products 2016

	Amps	Hours at	Hours on	Daily AH	Daily AH
		Anchor	Passage	at Anchor	on Passage
Refrigeration	5	6	6	30	30
Radar	4		4	0	16
Computer - Laptop	4	1	8	4	32
Autopilot	1.5		8	0	12
Cabin Lights (LED)	1	4		4	0
Nav/Anchor Lights	0.2	10	10	2	2
Stereo	1	3	3	3	3
VHF Radio	0.5	8	8	4	4
Instruments	1		8	0	8
Pressure Water	6	0.25	0.1	1.5	0.6
Phone Charger	1	2	2	2	2
Other				0	0
Other				0	0
				50.5	109.6

	Amps	Н	ours at	Hours on	Daily AH	Daily AH
		F	Anchor	Passage	at Anchor	on Passage
Refrigeration	5		6	6	30	30
Radar	4			4	0	16
Computer - Laptop	4		1	8	4	32
Autopilot	1.5			8	0	12
Cabin Lights (LED)	1		4		4	0
Nav/Anchor Lights	0.2		10	10	2	2
Stereo	1		3	3	3	3
VHF Radio	0.5		8	8	4	4
Instruments	1			8	0	8
Pressure Water	6		0.25	0.1	1.5	0.6
Phone Charger	1		2	2	2	2
Other					0	0
Other					0	0
					50.5	109.6

	Amps	Hou	Hours at Hour		ours on	Daily AH	Daily AH
		And	hor	Pa	assage	at Anchor	on Passage
Refrigeration	5		6		6	30	30
Radar	4				4	0	16
Computer - Laptop	4		1		8	4	32
Autopilot	1.5				8	0	12
Cabin Lights (LED)	1		4			4	0
Nav/Anchor Lights	0.2		10		10	2	2
Stereo	1		3		3	3	3
VHF Radio	0.5		8		8	4	4
Instruments	1				8	0	8
Pressure Water	6		0.25		0.1	1.5	0.6
Phone Charger	1		2		2	2	2
Other						0	0
Other						0	0
						50.5	109.6

	Amps	Hours at		Hours on		Daily AH		Daily AH
		Ar	nchor	Pa	ssage	at Aı	nchor	on Passage
Refrigeration	5		6		6		30	30
Radar	4				4		0	16
Computer - Laptop	4		1		8		4	32
Autopilot	1.5				8		0	12
Cabin Lights (LED)	1		4				4	0
Nav/Anchor Lights	0.2		10		10		2	2
Stereo	1		3		3		3	3
VHF Radio	0.5		8		8		4	4
Instruments	1				8		0	8
Pressure Water	6		0.25		0.1		1.5	0.6
Phone Charger	1		2		2		2	2
Other							0	0
Other							0	0
							50.5	109.6

	An	mps Hours at		Hour	ours on Daily AH		Daily AH		
			Anchor	Pass	age	at	Anchor	on Pas	sage
Refrigeration		5	6		6		30		30
Radar		4			4		0		16
Computer - Laptop		4	1		8		4		32
Autopilot		1.5			8		0		12
Cabin Lights (LED)		1	4				4		0
Nav/Anchor Lights		0.2	10		10		2		2
Stereo		1	3		3		3		3
VHF Radio		0.5	8		8		4		4
Instruments		1			8		0		8
Pressure Water		6	0.25		0.1		1.5		0.6
Phone Charger		1	2		2		2		2
Other							0		0
Other							0		0
							50.5		109.6

	Amps	Hours at	Hours on	Daily AH	Daily AH	Ste
		Anchor	Passage	at Anchor	on Passage	
Refrigeration	5	6	6	30	30	
Radar	4		4	0	16	
Computer - Laptop	4	1	8	4	32	
Autopilot	1.5		8	0	12	
Cabin Lights (LED)	1	4		4	0	
Nav/Anchor Lights	0.2	10	10	2	2	
Stereo	1	3	3	3	3	
VHF Radio	0.5	8	8	4	4	
Instruments	1		8	0	8	
Pressure Water	6	0.25	0.1	1.5	0.6	
Phone Charger	1	2	2	2	2	
Other	_			0	0	
Other				Û	0	
				50.5	109.6	
Equipment going thre	ough an	Inverter (Mu	ultiply by 1.	2 for inverter	inefficiency)	
Microwave	80	0.1		9.6	0	
Windlass				0	0	
Other				0	0	
Other				0	0	
				9.6	0	
total Amp Hours Con	sumed p	er Dav		60.1	109.6	

Custom Marine Products 2016

Determine Solar Capacity Needed

Total Amp Hours Consumed per Day	60.1	109.6

Average Hours of Sun per Day	5		
Note: 5 is a good number for panels mounter			
7 for panels tilted and rotated.			
Rated Panel Amperage Needed (Immp)		12.0	21.9
Panel Rated Voltage (Vmmp)	18		
Rated Panel Wattage Required (Watts)		216.4	394.6

Watts = Volts X Amps

Step 2

Determine Solar Capacity Needed

Total Amp Hours Consumed per Day	60.1	109.6

Average Hours of Sun per Day	7		
Note: 5 is a good number for panels mount	ed horizontal	,	
7 for panels tilted and rotated.			
Rated Panel Amperage Needed (Immp)		8.6	15.7
Panel Rated Voltage (Vmmp)	18		
Rated Panel Wattage Required (Watts)		154.5	281.8

Our Case Study Boat

Step 2

Sample Power Consumption Worksheet

	Amps	Hours at	Hours on	Daily AH	Daily AH
		Anchor	Passage	at Anchor	on Passage
Refrigeration	5	6	6	30	30
Radar	4		4	0	16
Computer - Laptop	4	1	8	4	32
Autopilot	1.5		8	0	12
Cabin Lights (LED)	1	4		4	0
Nav/Anchor Lights	0.2	10	10	2	2
Stereo	1	3	3	3	3
VHF Radio	0.5	8	8	4	4
Instruments	1		8	0	8
Pressure Water	6	0.25	0.1	1.5	0.6
Phone Charger	1	2	2	2	2
Other				0	0
Other				0	0
				50.5	109.6
Equipment going thro	ough an	Inverter (Mi	ultiply by 1.	2 for inverter	inefficiency)
Microwave	80	0.1		9.6	0
Windlass				0	0
Other				0	0
Other				0	0
				9.6	0
Total Amp Hours Cons	sumed p	er Day		60.1	109.6
AH - Amp Hours - Amp	s of curr	ent consumed	l in an hour		
Windlass is often not o	considere	ed because er	ngine alterna	ator is running	when used
Average Hours of Sun p	ber Day		5		
Note: 5 is a good num	ber for p	anels mounte	d horizontal	,	
7 for panels tilte	ed and ro	otated.			
Rated Panel Amperag	e Neede	ed (Immp)		12.0	21.9
Panel Rated Voltage (V	/mmp)		18		
Rated Panel Wattage F	Reauired	(Watts)		216.4	394.6

Available at custommarineproducts.com

- Support

- Manuals & Info

Battery Bank Capacity in our Example

At Anchor On Passage

Step 3

Total Amp Hours Consumed per Day		60.1	109.6
		60	440
Amp hours consumed per day		60	110
Days to run on batteries only	Х	2	1.5
Amp hours required		120	165
Use 50% of battery bank capacity X 2			
Battery bank capacity needed (amp hours)		240	330

Note: You can use 50% of your battery bank capacity and keep your bank healthy.

Our Findings

Power consumption 60 to 110 amp hours

Optimum battery capacity 240 to 320 amp hours

Rated panel amperage needed 12 to 22 amps @ 5 hours sun avg. 8.6 to 16 amps @ 7 hours sun avg.

Rated panel wattage needed 216 to 395 watts

Watts = Volts X Amps

(Another Way to Analyze Your Solar Requirements)

- 1. Keep the batteries charged while on a mooring.
- Supplement current power generation capability.
 (Run my engine less to charge the batteries)
- 3. Generate all the power needed while at anchor.
- 4. Generate all the power needed on passage and at anchor.

- 1. Keep the batteries charged while on a mooring
 - Nothing running but bilge pump 30-50 watt panel
 - Refrigeration 30 amp hours 110 watt panel
 - PWM controller

2. Supplement current power generation capability at anchor (Run my engine every 3 days to charge the batteries)

2. Supplement current power generation capability at anchor (Run my engine every 3 days to charge the batteries)

2. Supplement current power generation capability at anchor (Run my engine every 3 days to charge the batteries)

Power consumed	60	AH/day
Days at anchor	X 3	Days
Amp hrs. needed	= 180	AH
Battery capacity @40%)- 96	AH
Amp hr. deficit	= 84	AH
Amp hr. deficit per day	= 28	AH
Hours of sun	/ 5	Hrs
Solar amps needed	= 5.6	Amps
Solar panel voltage	X 18	Volts
Solar Panel capacity	= 100	Watts

2. Supplement current power generation capability at anchor (Run my engine every 3 days to charge the batteries)

2. Supplement current power generation capability at anchor (Run my engine every 3 days to charge the batteries)

3. Generate all the power needed while at anchor for an extended period of time

Power consumed	60	60	AH/day
Days at anchor	X 3		Days
Amp hrs. needed	= 180	60	AH
Battery capacity @50%	- 120	120	AH
Amp hr. deficit	= 60	60	AH
Amp hr. deficit per day	= 20	60	AH
Hours of sun	/ 5	5	Hrs
Solar amps needed	= 4	12	Amps
Solar panel voltage	X 18	18	Volts
Solar Panel capacity	= 72	216	Watts

3. Generate all the power needed while at anchor for an extended period of time (Our Case Study Boat)

Power consumed Days at anchor	60 X 3	60 AH/day
Amp hrs. needed	= 180	60 AH
Battery capacity @50%	- 120	120 AH
Amp hr. deficit	= 60	60 AH
Amp hr. deficit per day	= 20	60 AH
Hours of sun	/ 5	7 Hrs
Solar amps needed	= 4	8.6 Amps
Solar panel voltage	X 18	18 Volts
Solar Panel capacity	= 72	154 Watts

4. Generate all the power needed while on passage and at anchor for an extended period of time

Step 4 What Do You Want to Achieve with Your Solar System? Solar Panel Controller

- Capacity Capacity 1. Keep the batteries charged while on 50 Watts 3 Amps a mooring
- 2. Supplement current power generation **100 Watts** capability
- Generate all the power needed while at anchor
- Generate all the power needed on passage and at anchor

Controller Selection

Under 200 Watts PWM Over 200 Watts MPPT or PWM

6 Amps

22 Amps

216 Watts 12 Amps

396 Watts

A Complete and Balanced Solar Power System

Solar Panel Installation Ideas

Semi-Flexible Solar Panels

- Canvas biminis
- Hard tops

Rigid Solar Panels

- Canvas biminis
- Hard tops
- Top-of-pole systems
- Dinghy davits

See Gallery of Installations at

custommarineproducts.com for more ideas.

100 Watt Semi-flexible Panels Zippered On

Two 50 Watt Semi-flexible Panels Bolted On

Four 100 Watt Semi-flexible Panels Sewn On

Two 110 Watt Semi-flexible Panels Bolted On

110 Watt Semi-flexible Panel Bolted on

or Attached with VHB Double Sided Tape

Gemini Mounting Bracket

Two Panels on a Bimini Mounted Frame

130 Watt Panel Rotated on a Bar

Two Rigid Panels Cantilevered

130 Watt Rigid Panel on a Ranger Tug 32

Two 275 Watt Panels on the Pilot House of a Nordic Tug 37

Custom MarineProducts 2016

Four 100 Watt Rigid Panels on a Nordic Tug 32

160 Watt Panel on a Pole with Outboard Motor Crane Tilt and Rotate

130 Watt Panel on a Pole Mount – Morgan 38

Two 90 Watt Panels Pole Mounted

(ingent)

Two 100 Watt Panels Rotatable On Dinghy Davits

Selecting the Proper Solar System for Your Boat

Q&A

Tom Trimmer Custom Marine Products

Complete top-of-pole solar panel kits contain everything you need to install solar power on your boat.

High Performance Marine Solar Panel

High Efficiency Dual Output Solar Controller and Solar Wire

Tilt and Rotate Mounting Hardware for Optimum Sun Angle

Use Your Solar Panel to Heat Water on Your Boat

Install our unique heat collector on the back of your solar panel and use the **sun's radiant energy** to heat water for showers and dish washing.

- You no longer need to run your engine at anchor to heat water.
- Solar heater can be integrated directly into your boat's water system.
- Highly efficient circulating pump moves water from the solar heat collector to your water heater.
- Kits are available for all CMP panels and many other brands.
- Kits include: heat collector, insulation, panel backing, pump, tubing.
- Easy DIY installation.
- Heat water to 115° F+.

- 1. Heat collector is mounted behind the solar panel.
- 2. Boat water heater is used for storage of warmed water.
- 3. Circulation pump can be turned on and off manually.
- 4. Solar panel is tilted and rotated for maximum heating efficiency.

Existing water system

- Existing water heating
- Solar water heating

Custom Marine Products 2016

High Performance Marine PV Solar Panel Specifications

Model	Maximum	Cell	Open	Short	Maximum	Maximum	Efficiency	Cell	Panel	Weight	Amp Hrs
	Power	Туре	Circuit	Circuit	Voltage	Power	%	Make	Size	lbs.	per Day
	Watts		Voltage	Current		Current			Inches		@6 Hrs
	Wp		Voc	lsc	Vmp	Imp					Sun
Semi-flexible											
CMP21050F	50	Mono	20.8	3.1	17.6	2.8	20.4	SunPower	20.9x21.7	3.3	16.8
CMP21100F	100	Mono	21.3	6.0	17.6	5.7	20.4	SunPower	21.3x41.3	5.5	34.2
CMP21110F	110	Mono	21.6	6.8	17.6	6.3	20.4	SunPower	22x47.2	6.6	37.8
Rigid											
CMP21100P	100	Poly	21.6	6.2	17.5	5.7	16.7	Q Cell	26.4x39.4	18.0	34.3
CMP21105M	105	Mono	21.6	6.5	17.5	6.0	17.9	Bosch	26.4x39.4	18.0	36.0
CMP21120S	120	Mono	24.0	6.5	20.0	6.0	21.0	SunPower	26.8x41.3	19.0	* 45.0
CMP21130M	130	Mono	21.6	7.9	18.0	7.3	17.8	Bosch	31.5x49	24.0	43.8
CMP21150P	150	Poly	21.9	9.2	17.6	8.5	17.1	Q Cell	39x39.5	26.5	51.0
CMP21160M	160	Mono	21.6	9.9	17.5	9.1	18.4	Bosch	39x39.5	26.5	54.6
CMP21200S	200	Mono	26.4	12.0	17.6	11.4	21.0	SunPower	41.3x41.3	28.0	68.4

All marine solar panels have a 10 year warranty.

* With MPPT Controller

Semi-flexible SunPower Cells

Rigid Polycrystalline

Rigid Monocrystalline

Custom Marine Products 2016

Solar Panel Power Requirement Worksheet

Power Consumption	lysis				Solar Panel Capacity (Watts) Calculation					
	Amps	Hours at	Hours on	Daily AH	Daily AH	AH		cenarios		
Pofrigoration	г	Anchor	rassage		UII Passage		Α	В	С	D
Radar	5	0	0	30 0	30	Power Consumed per Day	30	60	60	110
Computer - Lapton	4	1	4	٥ ۵	32	Days at Anchor	1	3	3	
Autopilot	1.5	1	8		12	Amp Hrs Needed	30	180	180	110
Cabin Lights (LED)	1	4		4	0		50	100	100	110
Nav/Anchor Lights	0.2	10	10	2	2	Detter Derek Deter Arright	240	240	240	240
Stereo	1	3	3	3	3	Battery Bank Rated Amp Hrs.	240	240	240	240
VHF Radio	0.5	8	8	4	4	Battery Draw Down %	0%	40%	0%	0%
Instruments	1		8	0	8	Battery Amps Drawn	-	96	-	-
Pressure Water	6	0.25	0.1	1.5	0.6	Amp Hr. Deficit	30	84	180	110
Phone Charger	1	2	2	2	2	Amp Hr. Deficit per Day	30	28	60	110
Other				0	0					
Other				0	0	Hours of Sun	5.0	5.0	5.0	7.0
				50.5	109.6	Solar Panel Amps(Imp) Needed	6.0	5.6	12.0	15.7
Equipment going through an Inverter (Multiply by 1.2 for inverter inefficiency)					Color Danol Voltago (Vrss)	10.0	10.0	10.0	22.0	
Microwave	80	0.1		9.6	0	Solar Panel Voltage (Vmp)	18.0	18.0	18.0	22.0
Windlass				0	0	Solar Panel Watts Needed				
Other				0	0	With PWM Controller	108	101	216	346
Other				0	0	With MPPT Controller	90	84	180	236
				9.6	0	A. On a mooring with refrig	eration			
Total Amp Hours Consumed per Day 60.1 109.6					109.6	B. 3 days at anchor supplement with 40% of battery capacity				

- C. 3 days at anchor no battery supplement
- D. All power from solar with max power usage
- 1. Determine your daily power consumption
- 2. Assess your battery capacity
- 3. Calculate solar amps needed
- 4. Calculate solar watts needed
- 5. Select solar panel(s) and controller

Custom Marine Products 2016