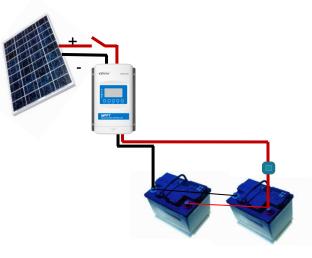
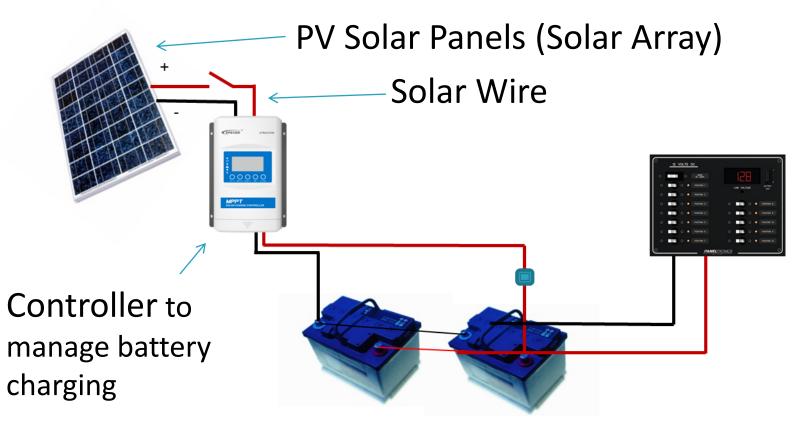


Selecting the Proper Solar System for Your Boat


> Tom Trimmer Custom Marine Products

Introduction: I Am a Cruising Sailor -Having Sufficient Power Onboard is Important


Topics for Discussion

- Introduction to PV solar panels
- Introduction to solar controllers
- What is a balanced solar system?
- Designing your solar system
 - A case study
- Selecting the proper equipment
- Installation ideas
- Q&A

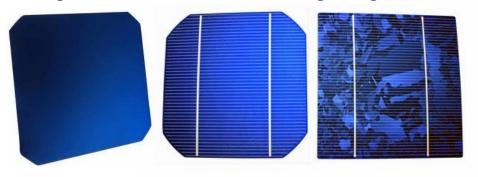
Slides at: custommarineproducts.com Support, Manuals & Info

Components of a PV Solar System (PhotoVoltaic)

Battery Bank

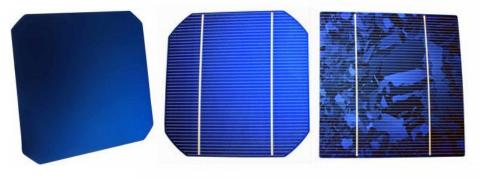
A Few things to Know About PV Solar Panels (PhotoVoltaic)

Monocrystalline or Polycrystalline?


Grade A or B or C?

Rigid, Semi-rigid or Semi-flexible?

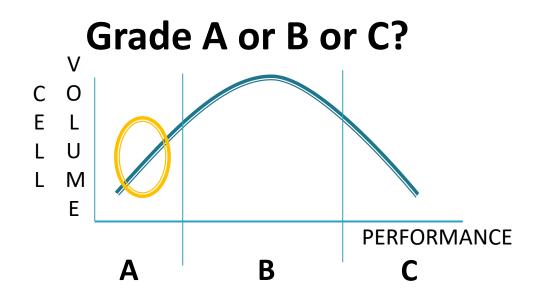
Commercial or Marine?


Monocrystalline or Polycrystalline?

Monocrystalline

- Generally higher efficiency solar cells 16 % to 24%
- Generally higher output than polycrystalline in full sun
- More expensive than polycrystalline (\$3 \$8 per watt)
 Polycrystalline
- Cell efficiency typically 13% to 16%
- Generally less sensitive to shading and clouds than monocrystalline
- Less expensive that monocrystalline (\$2 \$5 per watt)

Monocrystalline or Polycrystalline?

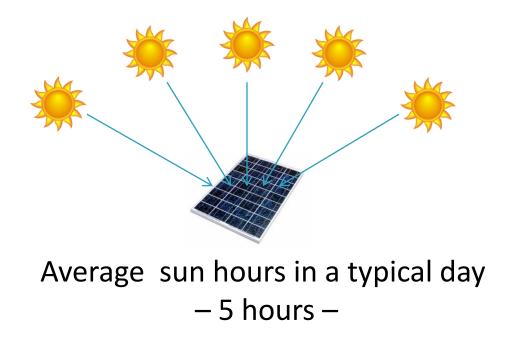

Monocrystalline

- Generally higher efficiency solar cells 16 % to 24%
- Generally higher output than polycrystalline in full sun
- More expensive than polycrystalline (\$3 \$8 per watt)

Polycrystalline

- Cell efficiency typically 13% to 16%
- Generally less sensitive to shading and clouds than monocrystalline
- Less expensive that monocrystalline (\$2 \$5 per watt)

Note: Efficiency of thin-film panels is only 7% - 12%



All solar cells are not created equal

- Cells are graded under a standard artificial light and sorted by power output.
- The distribution of performance is a Bell Curve with most cells being a B grade.
- Grade A will typically perform above rating in full sun light.
- Grade B is typically used for residential and solar farms.
- Grade A+ is desirable on a boat where space is limited.

We want maximum output per square inch.

Why the Quality of Solar Cells is Important

It's all about watt hours

Higher performance solar cells produce more power at sub-optimal sun angles than lower performance solar cells - up to 30% more power.

A lower performance 100 watt panel will produce up to 100 watts x 5 hours or 500 watt hours in a day.

A higher performance 100 watt panel will produce up to 650 watt hours in a day.

That's 150 watt hours or 12.5 amp hrs. more power

Rigid, Semi-rigid or Semi-flexible?

Rigid panels

- Have a life span >18 years robust
- Excellent for pole, arch, frame and davit mounting Semi-rigid panels
- Have a life span >10 years robust
- Excellent for cabin top, rigid surface mounting
- Can be walked on
- Semi-flexible panels
- Have a life span >7 years
- Excellent for canvas bimini and rigid surface mounting
- Light weight
- Some are sensitive to shading

All *CMPower* panels use premium SunPower solar cells and have comparable performance.

Rigid, Semi-rigid or Semi-flexible?

Rigid panels

- Have a life span >18 years robust
- Excellent for pole, arch, frame and davit mounting

Semi-rigid panels

- Have a life span >10 years robust
- Excellent for cabin top, rigid surface mounting
- Can be walked on

Semi-flexible panels

- Have a life span >7 years
- Excellent for canvas bimini and rigid surface mounting
- Light weight
- Some are sensitive to shading

All *CMPower* panels use premium SunPower solar cells and have comparable performance.

Rigid, Semi-rigid or Semi-flexible?

Rigid panels

- Have a life span >18 years robust
- Excellent for pole, arch, frame and davit mounting Semi-rigid panels
- Have a life span >10 years robust
- Excellent for cabin top, rigid surface mounting
- Can be walked on

Semi-flexible panels

- Have a life span >7 years
- Excellent for canvas bimini and rigid surface mounting
- Light weight
- Some are sensitive to shading

All *CMPower* panels use premium SunPower solar cells and have comparable performance.

How is a Marine Solar Panel Different from a Commercial Solar Panel?

Marine Solar Panel

- Junction box is filled with inert silicone to prevent corrosion
- Rigid panels have strong frames and extra sealants
- Panels have high output power performance Grade A+ cells
- Output compatible with 12 or 24 volt battery bank systems
- Panel is wired to accommodate shading

Commercial Solar Panel

- Junction box not filled with inert material
- Frames designed for rack mounting
- Output typically 30+ volts
- Panel cells are typically Grade B or B+

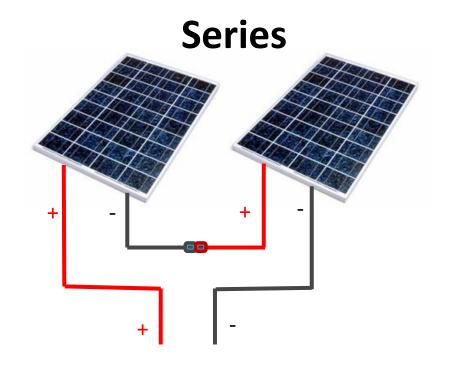
How is a Marine Solar Panel Different from a Commercial Solar Panel?

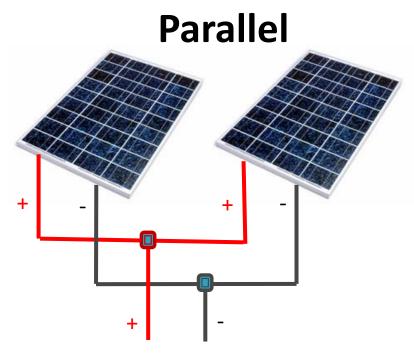
Marine Solar Panel

- Junction box is filled with inert silicone to prevent corrosion
- Rigid panels have strong frames and extra sealants
- Panels have high output power performance Grade A+ cells
- Output compatible with 12 or 24 volt battery bank systems
- Panel is wired to accommodate shading

Commercial Solar Panel

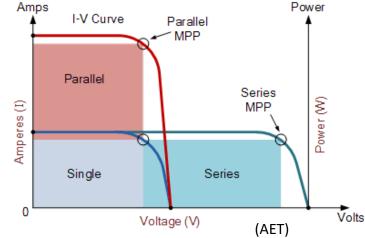
- Junction box not filled with inert material
- Frames designed for rack mounting
- Output typically 30+ volts
- Panel cells are typically Grade B or B+



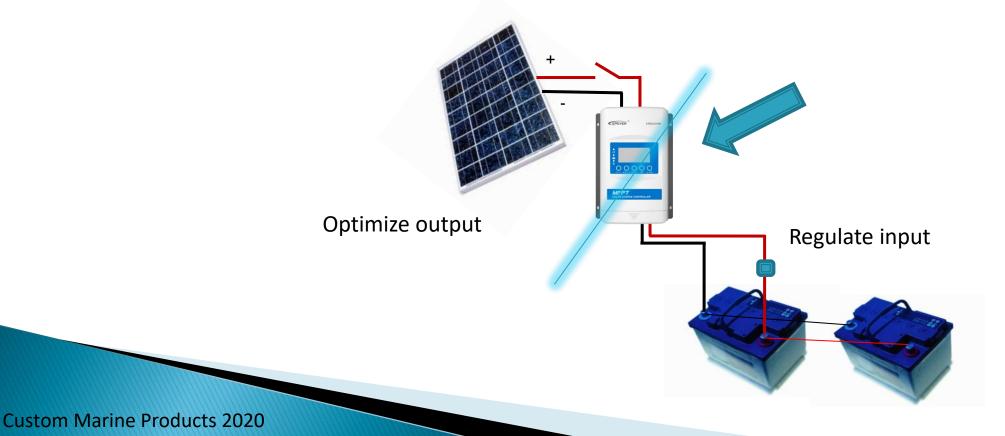

PV Solar Panel Specifications – What to Look For

Nominal Peak Power (Pmax) Maximum power point (Watts at STC)	130 W						
Nominal Voltage (Vmp) Voltage at maximum output power	22.3V						
Nominal Current (Imp) Current at maximum output power	5.8A						
Open Circuit Voltage (Voc) Maximum voltage output with no load							
Short circuit Current (Isc) Maximum current (amps) output with no load	6.8A						
Cell Efficiency % Amount of light energy converted to electrical energy	23.7%						
Cell Manufacturer							
Panel Efficiency % Isc - 28.0-							
Temp. Coefficient * (%/°C) % degradation per °C Imp 24.0-							
20.0- 18.0-	·\						
STC - Standard Test Conditions							
77°F (25°C) light intensity 1,000 watts/sq. meter							
10.0- 8.0-	1						
* A panel operating at 55°C with a temp coef. of3%	Vmp						
55°C - 25°C = 30°C 30°C *3% = 9% power loss							
0.0 5.0 10.0 15.0 Voltage [V]	20.0 Voc						
Current Curve 💽 Power Curve 🔼 Actual	Point						

Wiring Multiple Solar Panels


100 Watt, 18 Volt, 5.6 Amp

36 Volts **5.6** Amps


18 Volts **11.1** Amps

A Few Things to Know About Solar Controllers

The purpose of a solar controller is to:

- Optimize the power output of the solar array
- Regulate the amount of power going to the battery bank
- Prevent battery bank overcharging and overheating
- Prevent solar panels from absorbing power at night

There Are Two Types of Solar Controllers

(PWM) Pulse Width Modulation

- Pulse width modulation provides efficient battery charging
- Streams full power to battery bank when bank is low
- Useful if panel voltage is similar to battery voltage
- Less expensive than MPPT controllers

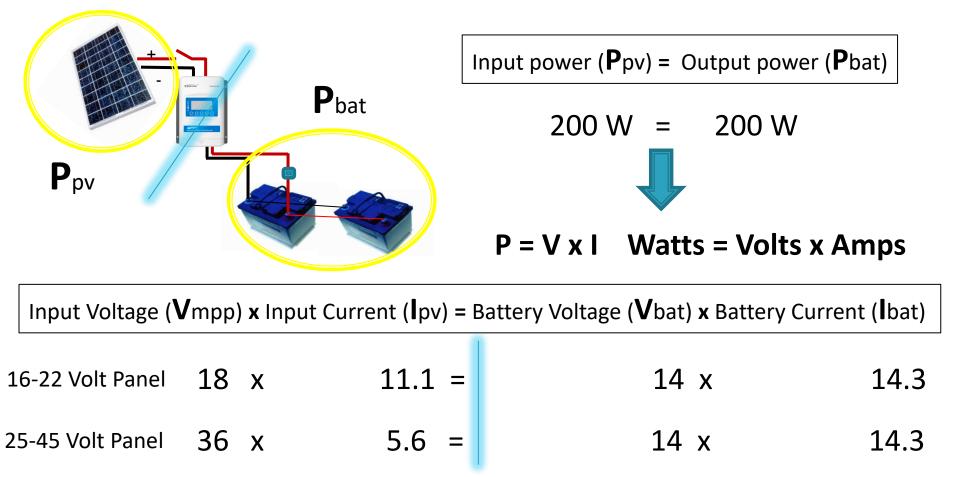
(MPPT) Maximum Power Point Tracking

- Essential to use with commercial solar panels (usually above 30 volts)
- Optimizes power from the solar array
- Reduces voltage to 14 volts and increases amperage
 Pw = V * I (Watts = Volts x Amps)
- Of little value for panels rated under 20 volts and for small solar arrays (under 200 watts).
- More expensive than PWM controllers

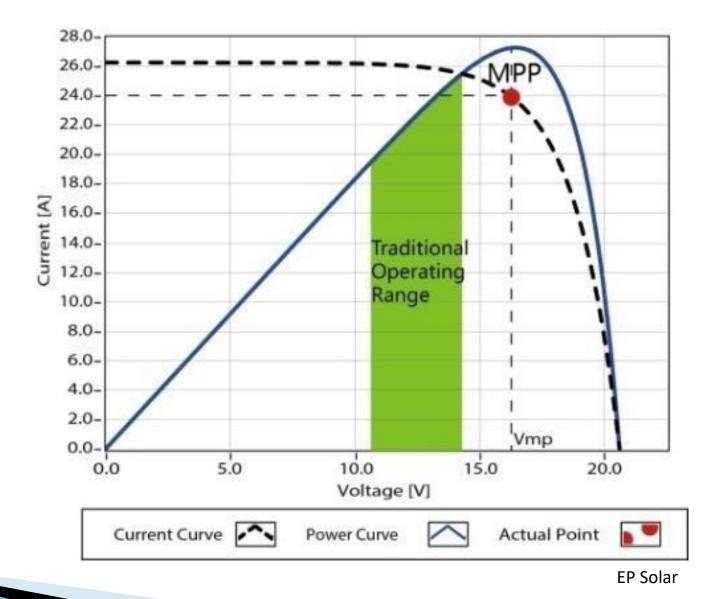
There Are Two Types of Solar Controllers

(PWM) Pulse Width Modulation

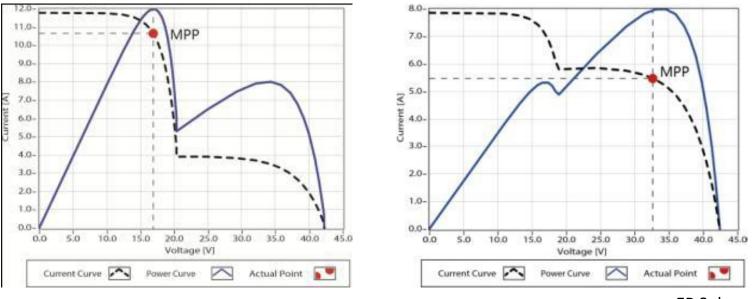
- Pulse width modulation provides efficient battery charging
- Streams full power to battery bank when bank is low
- Useful if panel voltage is similar to battery voltage
- Less expensive than MPPT controllers


(MPPT) Maximum Power Point Tracking

 Essential to use with commercial solar panels (usually above 30 volts)

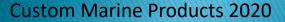

- Optimizes power from the solar array
- Reduces voltage to 14 volts and increases amperage
 Pw = V * I (Watts = Volts x Amps)
- Of limited value for panels rated under 20 volts and for small solar arrays (under 100 watts).
- More expensive than PWM controllers

Maximum Power Point Tracking Technology

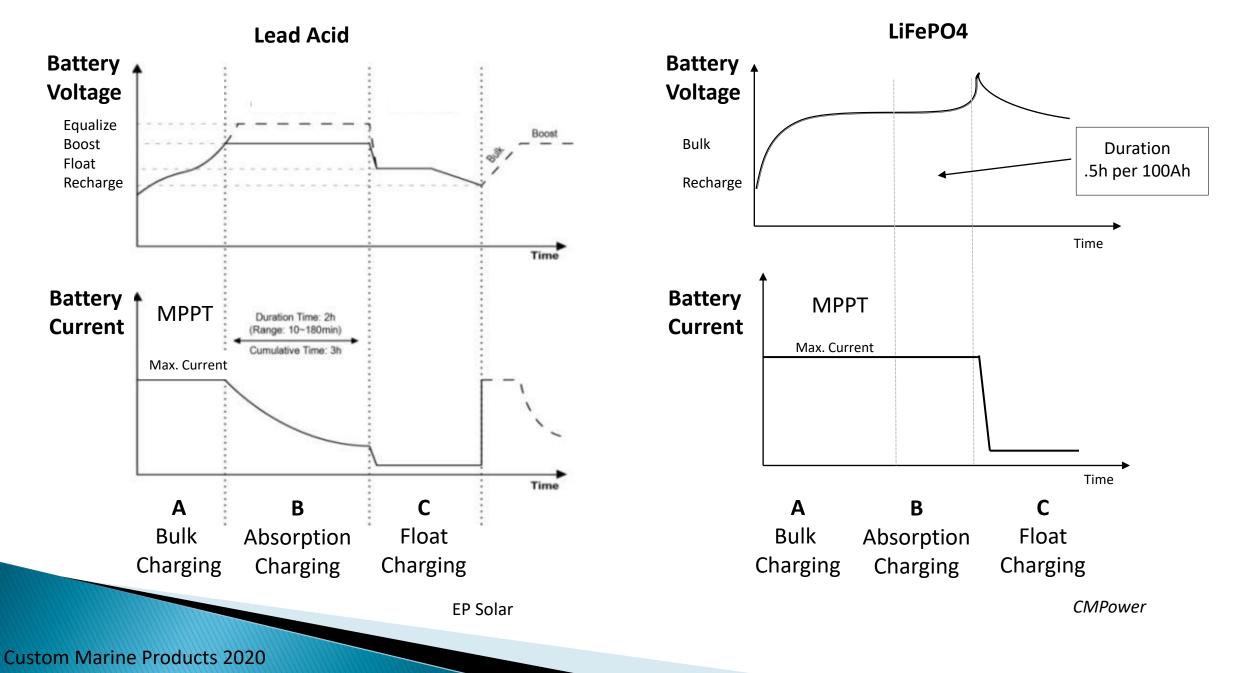


At 100% conversion efficiency

Maximum Power Point Curve

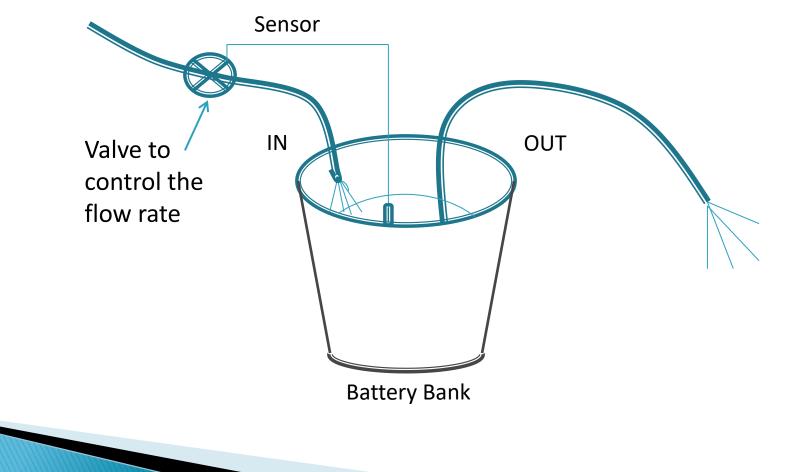


Maximum Power Point Tracking Technology Impact of Shading and Dissimilar Panels

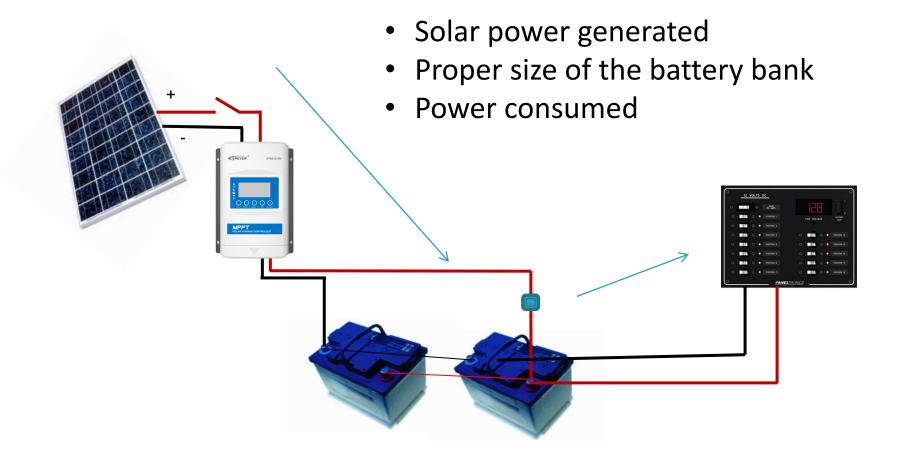


EP Solar

Multi - MPP

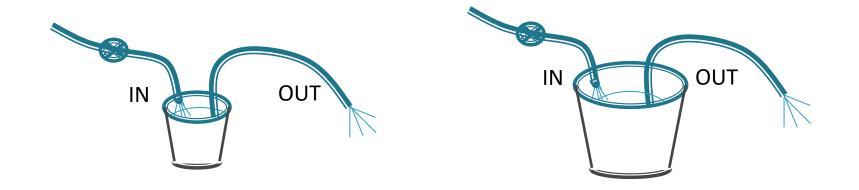


Battery Charging Curves



A Balanced System

- Water in
- Size of the bucket
- Water consumed



A Balanced System

Sizing Your Battery Bank

Battery capacity is measured in Amp Hours (AH)

A limited capacity battery bank

- Unable to store all the power your solar panels produce
- No reserve for cloudy days
- Must always be monitored because continually stressed

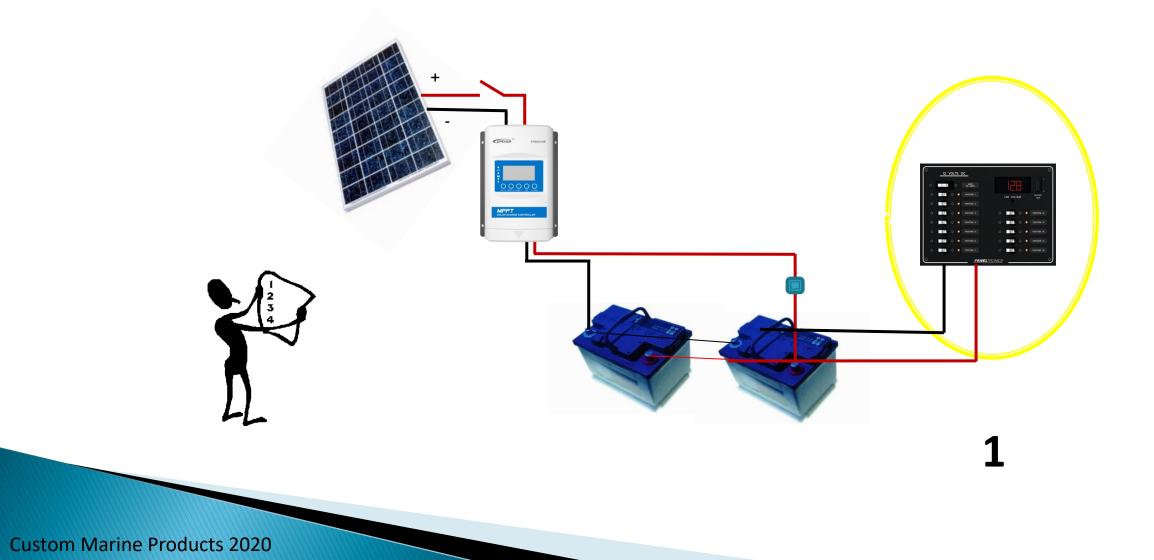
Your battery bank should have the capacity to support your boat's power requirements for at least 24 to 48 hours

Our Case Study Boat

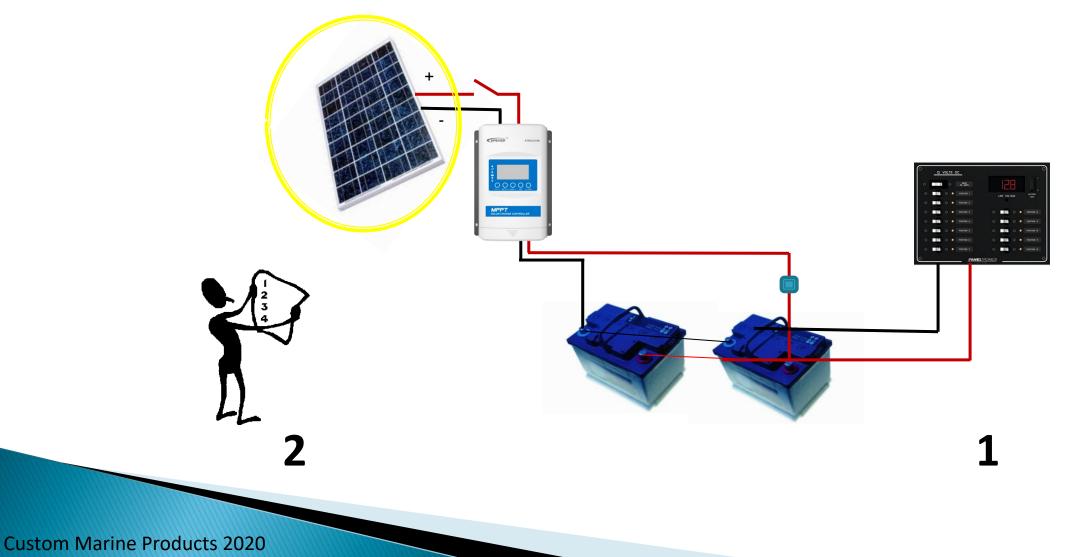
What Do You Want to Achieve with Your Solar System?

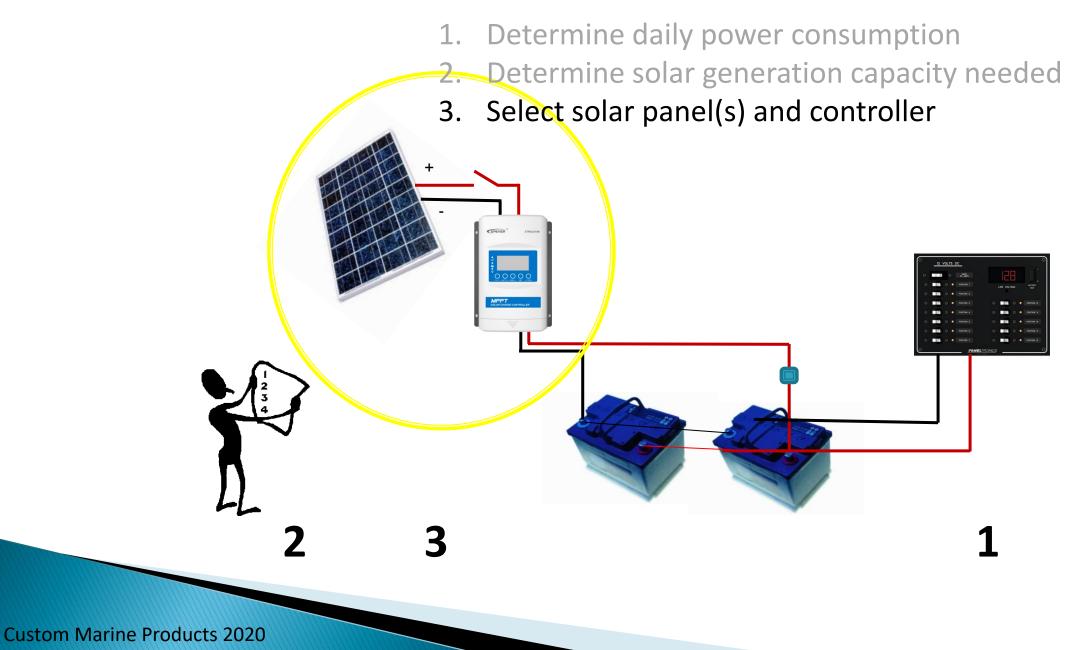
- A. Keep the batteries charged while on a mooring.
- B. Supplement current power generation capability.(Run my engine less to charge the batteries)
- C. Generate all the power needed while at anchor.

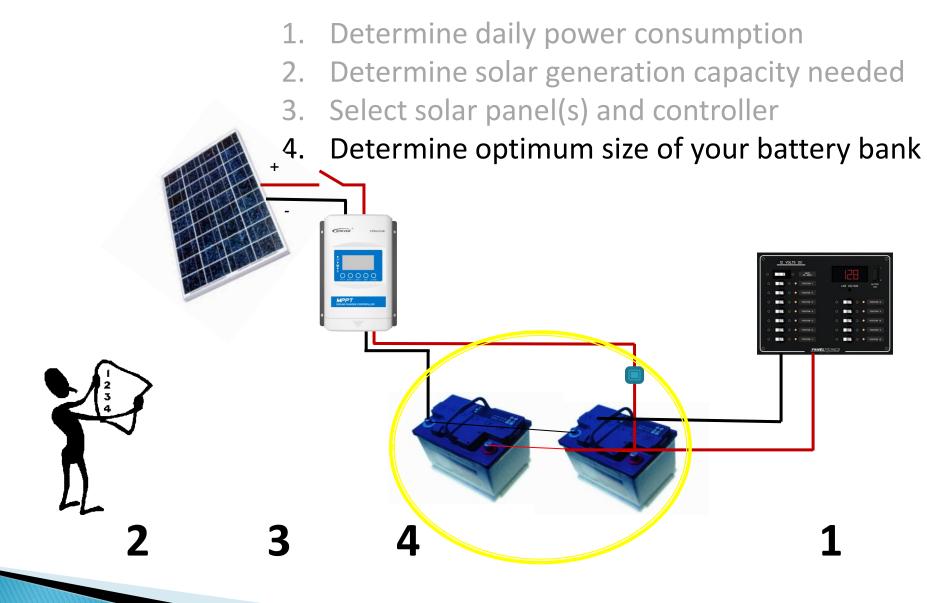
D. Generate all the power needed at anchor and on passage.


What Do You Want to Achieve with Your Solar System?

- A. Keep the batteries charged while on a mooring.
- B. Supplement current power generation capability.(Run my engine less to charge the batteries)
- C. Generate all the power needed while at anchor.

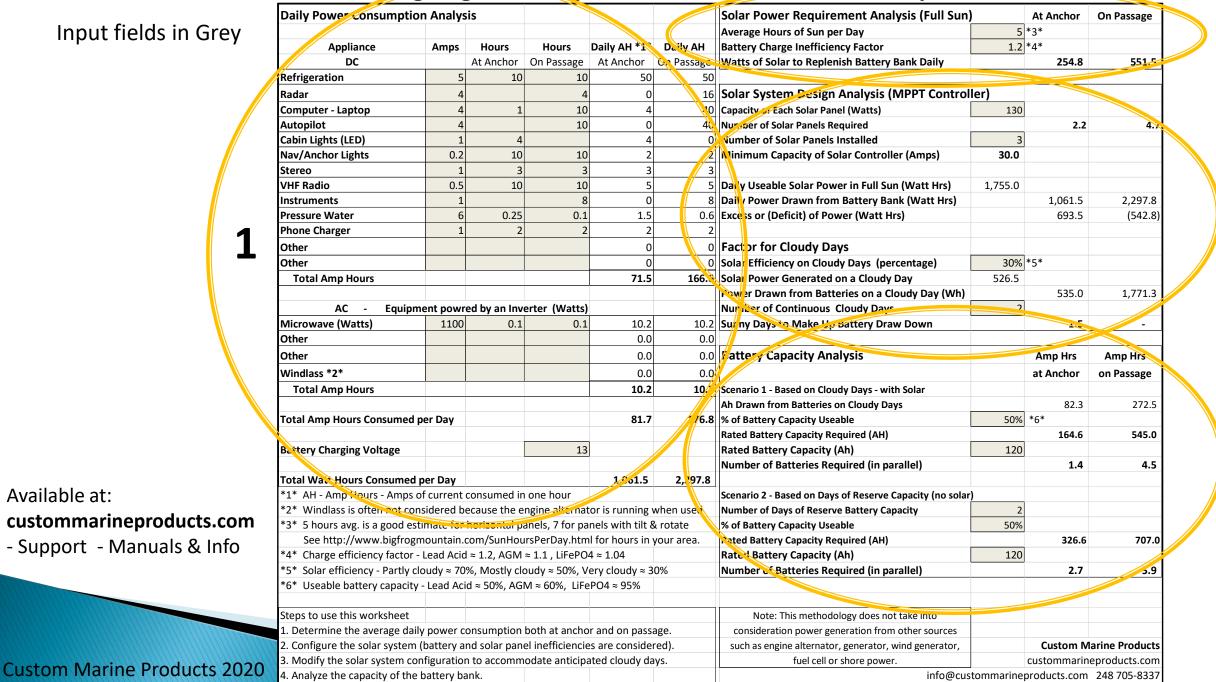



D. Generate all the power needed at anchor and on passage.


1. Determine daily power consumption

- 1. Determine daily power consumption
- 2. Determine solar generation capacity needed

Worksheet for Designing a Solar System Based on Power Consumption


Input fields in Grey

Daily Power Consumption	Analys	is				Solar Power Requirement Analysis (Full Sun)		At Anchor	On Passage
						Average Hours of Sun per Day	5	*3*	
Appliance	Amps	Hours	Hours	Daily AH *1*	Daily AH	Battery Charge Inefficiency Factor	1.2 *4*		
DC		At Anchor	On Passage	At Anchor	On Passage	Watts of Solar to Replenish Battery Bank Daily		254.8	551.
Refrigeration	5	10	10	50	50				
Radar	4		4	. 0	16	Solar System Design Analysis (MPPT Controll	er)		
Computer - Laptop	4	1	10	4	40	Capacity of Each Solar Panel (Watts)	130		
Autopilot	4		10	0	40	Number of Solar Panels Required		2.2	
Cabin Lights (LED)	1	4		4	0	Number of Solar Panels Installed	3		
Nav/Anchor Lights	0.2	10	10	2	2	Minimum Capacity of Solar Controller (Amps)	30.0		
Stereo	1	3	3	3	3				
VHF Radio	0.5	10	10	5	5	Daily Useable Solar Power in Full Sun (Watt Hrs)	1,755.0		
Instruments	1		8	0	8	Daily Power Drawn from Battery Bank (Watt Hrs)		1,061.5	2,297
Pressure Water	6	0.25	0.1	1.5	0.6	Excess or (Deficit) of Power (Watt Hrs)		693.5	(542
Phone Charger	1	2	2	2	2				
Other				0	0	Factor for Cloudy Days			
Other				0	0	Solar Efficiency on Cloudy Days (percentage)	30%	*5*	
Total Amp Hours				71.5	166.6	Solar Power Generated on a Cloudy Day	526.5		
-						Power Drawn from Batteries on a Cloudy Day (Wh)		535.0	1,771
AC - Equipme	nt powr	ed by an Inv	erter (Watts))		Number of Continuous Cloudy Days	2		
Microwave (Watts)	1100	0.1	0.1	. 10.2	10.2	Sunny Days to Make Up Battery Draw Down		1.5	-
Other				0.0	0.0				
Other				0.0	0.0	Battery Capacity Analysis		Amp Hrs	Amp Hrs
Windlass *2*				0.0	0.0			at Anchor	on Passag
Total Amp Hours				10.2	10.2	Scenario 1 - Based on Cloudy Days - with Solar			
•						Ah Drawn from Batteries on Cloudy Days		82.3	272
Total Amp Hours Consumed pe	er Dav			81.7	176.8	% of Battery Capacity Useable	50%	*6*	
						Rated Battery Capacity Required (AH)		164.6	545
Battery Charging Voltage			13			Rated Battery Capacity (Ah)	120		
						Number of Batteries Required (in parallel)		1.4	4
Total Watt Hours Consumed pe	er Dav			1,061.5	2,297.8				
1 AH - Amp Hours - Amps of	,	consumed in	one hour	,	,	Scenario 2 - Based on Days of Reserve Capacity (no solar)			
2 Windlass is often not consi				tor is running v	when used	Number of Days of Reserve Battery Capacity	2		
3 5 hours avg. is a good estin			0	•		% of Battery Capacity Useable	50%		
See http://www.bigfrogmo		•				Rated Battery Capacity Required (AH)		326.6	70
4 Charge efficiency factor - L		•	•			Rated Battery Capacity (Ah)	120		
5 Solar efficiency - Partly clo					0%	Number of Batteries Required (in parallel)		2.7	5
6 Useable battery capacity -						,			
Steps to use this worksheet						Note: This methodology does not take into			
1. Determine the average daily	power c	onsumption	both at ancho	or and on passa	age.	consideration power generation from other sources			
2. Configure the solar system (b	attery a	nd solar pan	el inefficienci	es are consider	red).	such as engine alternator, generator, wind generator,		Custom M	arine Produ
3. Modify the solar system conf	iguratio	n to accomm	odate anticip	ated cloudy da	ys.	fuel cell or shore power. custommarineproducts.			
4. Analyze the capacity of the ba	attory ha	ank				info@cust	ommarine	products.com	248 705-83

Available at: custommarineproducts.com

- Support - Manuals & Info

Worksheet for Designing a Solar System Based on Power Consumption

Step 1

Sample Power Consumption Worksheet

Appliance	Amps	Hours	Hours	Daily AH *1*	Daily AH
DC		At Anchor	On Passage	At Anchor	On Passage
Refrigeration	5	10	10	50	50
Radar	4		4	0	16
Computer - Laptop	4	1	10	4	40
Autopilot	4		10	0	40
Cabin Lights (LED)	1	4		4	0
Nav/Anchor Lights	0.2	10	10	2	2
Stereo	1	3	3	3	3
VHF Radio	0.5	10	10	5	5
Instruments	1		8	0	8
Pressure Water	6	0.25	0.1	1.5	0.6
Phone Charger	1	2	2	2	2
Other				0	0
Other				0	0
Total Amp Hours				71.5	166.6

1 AH – Amp Hours

Sample Power Consumption Worksheet

Appliance	Amps	Hours	Hours	Daily AH *1*	Daily AH
DC		At Anchor	On Passage	At Anchor	On Passage
Refrigeration	5	10	10	50	50
Radar	4		4	0	16
Computer - Laptop	4	1	10	4	40
Autopilot	4		10	0	40
Cabin Lights (LED)	1	4		4	0
Nav/Anchor Lights	0.2	10	10	2	2
Stereo	1	3	3	3	3
VHF Radio	0.5	10	10	5	5
Instruments	1		8	0	8
Pressure Water	6	0.25	0.1	1.5	0.6
Phone Charger	1	2	2	2	2
Other				0	0
Other				0	0
Total Amp Hours				71.5	166.6

Amp Draw of Each Appliance

Sample Power Consumption Worksheet

Appliance	Amps	Но	urs	Hours		Daily AH *1*	Daily AH
DC		At Ar	nchor	On Passage		At Anchor	On Passage
Refrigeration	5		10		10	50	50
Radar	4				4	0	16
Computer - Laptop	4		1		10	4	40
Autopilot	4				10	0	40
Cabin Lights (LED)	1		4			4	0
Nav/Anchor Lights	0.2		10		10	2	2
Stereo	1		3		3	3	3
VHF Radio	0.5		10		10	5	5
Instruments	1				8	0	8
Pressure Water	6		0.25		0.1	1.5	0.6
Phone Charger	1		2		2	2	2
Other						0	0
Other						0	0
Total Amp Hours						71.5	166.6

Hours Used of Each Appliance

Sample Power Consumption Worksheet

Appliance	Am	ps	Н	our	S	Hours		Daily AH *1*		Daily AH	
DC				At Anchor		On Passage		At Anchor		On Passage	
Refrigeration		5			10		10		50		50
Radar		4					4		0		16
Computer - Laptop		4			1		10		4		40
Autopilot		4					10		0		40
Cabin Lights (LED)		1			4				4		0
Nav/Anchor Lights		0.2			10		10		2		2
Stereo		1			3		3		3		3
VHF Radio		0.5			10		10		5		5
Instruments		1					8		0		8
Pressure Water		6		(0.25		0.1		1.5		0.6
Phone Charger		1			2		2		2		2
Other									0		0
Other									0		0
Total Amp Hours									71.5		166.6

Amps X Hours = Daily Amp Hours

Sample Power Consumption Worksheet

Appliance	A	Amps		Hours	Но	urs	Da	aily AH *1*	D	aily AH
DC			A	t Anchor	On Passage		At Anchor		On Passage	
Refrigeration		5		10		10		50		50
Radar		4				4		0		16
Computer - Laptop		4		1		10		4		40
Autopilot		4				10		0		40
Cabin Lights (LED)		1		4				4		0
Nav/Anchor Lights		0.2		10		10		2		2
Stereo		1		3		3		3		3
VHF Radio		0.5		10		10		5		5
Instruments		1				8		0		8
Pressure Water		6		0.25		0.1		1.5		0.6
Phone Charger		1		2		2		2		2
Other								0		0
Other								0		Ø
Total Amp Hours								71.5		166 6


Amps X Hours = Daily Amp Hours

	Daily Power Consumption	sis				Step 1	
	Appliance	Amps	Hours	Hours	Daily AH *1*	Daily AH	
	DC		At Anchor	On Passage	-	On Passage	
	Refrigeration	5	10	10		50	
	Radar	4		4	0	16	
	Computer - Laptop	4	1	10	4	40	
	Autopilot	4		10	0	40	
	Cabin Lights (LED)	1	4		4	0	
	Nav/Anchor Lights	0.2	10	10	2	2	
	Stereo	1	3	3	3	3	
	VHF Radio	0.5	10	10	5	5	
	Instruments	1		8	0	8	
	Pressure Water	6	0.25	0.1	1.5	0.6	
	Phone Charger	1	2	2	2	2	
	Other				0	0	
	Other				0	0	
	Total Amp Hours				71.5	166.6	
							1,100 watts / 13 volts x 1.2 inverter
		ent powr	ed by an Inv	erter (Watts)			inefficiency facto
	Microwave (Watts)	1100	0.1	0.1		10.2	
Υ.	Other				0.0	0.0	
\backslash	Other				0.0	0.0	
	Windlass *2*				0.0	0.0	
	Total Amp Hours				10.2	10.2	
×							
	Total Amp Hours Consumed pe	er Day			81.7	176.8	
	Battery Charging Voltage			13			
Custom Marine Products 2020	Total Watt Hours Consumed p	er Day			1,061.5	2,297.8	

Determine Solar Capacity Needed Step 2

	At Anchor On Passage
Total Amp Hours Consumed per Day	81.7 176.8
attery Charging Voltage	13
otal Watt Hours Consumed per Day	1,061.5 2,297.8

Note: Average hours of sun per day is based on the sun angle throughout the day.Note: 5 is a good number for horizontal panels, 7 for panels with tilt & rotate

Solar Power Requirement Analysis (Full Sun)	At Anchor	On Passage
Average Hours of Sun per Day	5		
Battery Charge Efficiency Factor	1.2		
Watts of Solar to Replenish Battery Bank Daily		254.8	551.5
Charge efficiency factor –		1	

Lead Acid \approx 1.2, AGM \approx 1.1, LiFePO4 \approx 1.04

Watts of Solar Power Required

Select Solar Panels and Controller

Solar System Design Analysis (MPPT Control	ler)		
Capacity of Each Solar Panel (Watts)	130		
Number of Solar Panels Required		2.2	4.7
Number of Solar Panels Installed	3		
Minimum Capacity of Solar Controller (Amps)	30.0		
Daily Useable Solar Power in Full Sun (Watt Hrs)	1,755.0		
Daily Power Drawn from Battery Bank (Watt Hrs)		1,061.5	2,297.8
Excess or (Deficit) of Power (Watt Hrs)		693.5	(542.8)
Factor for Cloudy Days			
Solar Efficiency on Cloudy Days (percentage)	30%		
Solar Power Generated on a Cloudy Day	526.5		
Power Drawn from Batteries on a Cloudy Day (Wh)		535.0	1,771.3
Number of Continuous Cloudy Days	2		
Sunny Days to Make Up Battery Draw Down		1.5	-

Solar efficiency - Partly cloudy \approx 70%, Mostly cloudy \approx 50%, Very cloudy \approx 30%

Determine Optimum Size of Battery Bank

Battery Capacity Analysis		Amp Hrs	Amp Hrs
		at Anchor	on Passage
Scenario 1 - Based on Cloudy Days - with Solar			
Ah Drawn from Batteries on Cloudy Days		82.3	272.5
% of Battery Capacity Useable	50%		
Rated Battery Capacity Required (AH)		164.6	545.0
Rated Battery Capacity (Ah)	120		
Number of Batteries Required (in parallel)		1.4	4.5
Scenario 2 - Based on Days of Reserve Capacity (no solar)		
Number of Days of Reserve Battery Capacity	2		
% of Battery Capacity Useable	50%		
Rated Battery Capacity Required (AH)		326.6	707.0
Rated Battery Capacity (Ah)	120		
Number of Batteries Required (in parallel)		2.7	5.9

Useable battery capacity - Lead Acid ≈ 50%, AGM ≈ 60%, LiFePO4 ≈ 95%

Worksheet for Designing a Solar System Based on Power Consumption

Input fields in Grey

Daily Power Consumptio	n Analys	Sis				Solar Power Requirement Analysis (Full Sun)		On Passage	
						Average Hours of Sun per Day	5	*3*	
Appliance	Amps	Hours	Hours	Daily AH *1*	Daily AH	Battery Charge Inefficiency Factor	1.2	*4*	
DC		At Anchor	On Passage	At Anchor	On Passage	Watts of Solar to Replenish Battery Bank Daily		254.8	551.
Refrigeration	5	10	10	50	50				
Radar	4		4	0	16	Solar System Design Analysis (MPPT Control	ler)		
Computer - Laptop	4	1	10	4	40	Capacity of Each Solar Panel (Watts)	130		
Autopilot	4		10	0	40	Number of Solar Panels Required		2.2	4
Cabin Lights (LED)	1	4		4	0	Number of Solar Panels Installed	3		
Nav/Anchor Lights	0.2	10	10	2	2	Minimum Capacity of Solar Controller (Amps)	30.0		
Stereo	1	3	3	3	3				
VHF Radio	0.5	10	10	5	5	Daily Useable Solar Power in Full Sun (Watt Hrs)	1,755.0		
Instruments	1		8	0	8	Daily Power Drawn from Battery Bank (Watt Hrs)		1,061.5	2,297.
Pressure Water	6	0.25	0.1	1.5	0.6	Excess or (Deficit) of Power (Watt Hrs)		693.5	(542.
Phone Charger	1	2	2	2	2				
Other				0	0	Factor for Cloudy Days			
Other				0	0		30%	*5*	
Total Amp Hours				71.5	166.6		526.5		
· · · · · ·						Power Drawn from Batteries on a Cloudy Day (Wh)		535.0	1,771
AC - Equipm	ent powr	ed by an Inv	erter (Watts))		Number of Continuous Cloudy Days	2		
Microwave (Watts)	1100	0.1	0.1		10.2			1.5	-
Other				0.0	0.0				
Other				0.0	0.0	Battery Capacity Analysis		Amp Hrs	Amp Hrs
Windlass *2*				0.0	0.0			at Anchor	on Passage
Total Amp Hours				10.2	10.2	Scenario 1 - Based on Cloudy Days - with Solar			
P						Ah Drawn from Batteries on Cloudy Days		82.3	272
Total Amp Hours Consumed p	er Dav			81.7	176.8	% of Battery Capacity Useable	50%	*6*	
· · · · · · · · · · · · · · · · · · ·	/					Rated Battery Capacity Required (AH)		164.6	545
Battery Charging Voltage			13			Rated Battery Capacity (Ah)	120		
						Number of Batteries Required (in parallel)		1.4	4.
Total Watt Hours Consumed	per Day			1,061.5	2,297.8				
1 AH - Amp Hours - Amps c		consumed in	one hour	,		Scenario 2 - Based on Days of Reserve Capacity (no solar)			
2 Windlass is often not con				tor is running	when used	Number of Days of Reserve Battery Capacity	2		
3 5 hours avg. is a good est	imate for	horizontal pa	anels, 7 for pa	nels with tilt 8	& rotate	% of Battery Capacity Useable	50%		
See http://www.bigfrogn		•	•			Rated Battery Capacity Required (AH)		326.6	707
4 Charge efficiency factor -						Rated Battery Capacity (Ah)	120		
5 Solar efficiency - Partly cl					0%	Number of Batteries Required (in parallel)		2.7	5
6 Useable battery capacity			•						
,									
Steps to use this worksheet						Note: This methodology does not take into			
1. Determine the average dail	y power c	onsumption	both at ancho	or and on pass	age.	consideration power generation from other sources			
2. Configure the solar system						such as engine alternator, generator, wind generator,		Custom M	larine Produ
3. Modify the solar system cor						fuel cell or shore power.		custommarin	eproducts.cc
4. Analyze the capacity of the	-			,	-		tommarine		248 705-83

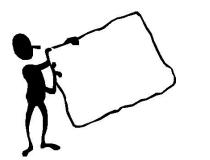
Available at: custommarineproducts.com

- Support - Manuals & Info

Our Findings

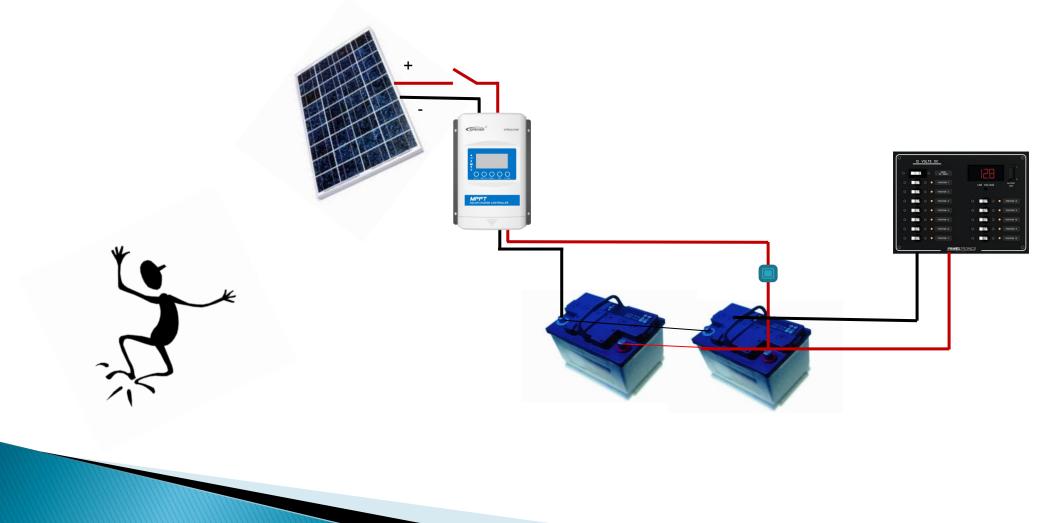
Generate All the Power Needed While at Anchor

Power consumption


82 to 177 amp hours

Optimum battery capacity

300 to 700 amp hours (lead acid)


Rated panel wattage needed

300 to 550 watts (roughly)

Watts = Volts x Amps

A Complete and Balanced Solar Power System

High Performance Marine PV Solar Panel Specifications

Model - Part Number	Nominal Peak Power Watts-Wp	Open Circuit Voltage Voc	Short Circuit Current Isc	Nominal Voltage Vmp	Nominal Power Current Imp	Cell Efficiency %	Solar Cell Mfg.	Cell Layout	Panel Size Inches	Weight Ibs.	Amp Hrs per Day @ 6 Hrs Sun
Semi-flexible - N	Ionocrystallin	e									
CMP23055FW	55	23.4	3.1	19.8	2.9	22.0	SunPower	4 x 8	21.25x22.8	3.3	25.4 *
CMP23055FB	55	23.4	3.1	19.8	2.9	22.0	SunPower	4 x 8	21.25x22.8	3.3	25.4 *
CMP23070F	70	23.4	3.9	19.8	3.6	22.8	SunPower	4 x 5	21.25x27.75	3.8	32.3 *
CMP23115F	115	21.9	6.7	18.6	6.2	23.7	SunPower	4 x 8	21.25x42.1	4.0	53.1 *
CMP23120F	120	24.0	6.5	20.0	6.0	20.4	SunPower	4 x 10	22.0x52.25	6.1	55.4 *
CMP23130F	130	26.3	6.2	22.3	5.8	23.7	SunPower	4 x 9	21.25x47.25	5.2	60.0 *
CMP23145F	145	27.8	6.8	23.2	6.3	23.7	SunPower	4 x 10	21.25x52.4	6.6	66.9 *
Semi-rigid - Mon	ocrystalline										
CMP24110SR	110	21.9	6.4	18.6	5.9	23.7	SunPower	4 x 8	21.65x42.9	12.0	50.8 *
CMP24120SR	120	24.0	6.4	20.3	5.9	23.7	SunPower	5 x 7	26x38	12.5	55.4 *
CMP24150SR	150	21.9	8.7	18.6	8.1	23.7	SunPower	5 x 9	26x48	13.5	69.2 *
CMP24175SR	175	34.7	6.4	29.4	6.0	23.7	SunPower	7 x 7	36.4x37.6	18.0	80.8 *
Rigid - Monocrys	stalline										
CMP21105M	105	21.6	6.5	17.5	6.0	17.9	Bosch	4 x 6	26.4x39.4	18.0	36.0
CMP22110S	110	21.9	6.4	18.6	5.9	22.6	SunPower	4 x 8	21.3x41.7	18.0	50.8 *
CMP22140S	140	28.3	6.3	24.0	5.8	23.7	SunPower	5 x 8	26.6x41.7	20.0	64.6 *
CMP22150SR	150	30.1	6.4	25.5	5.9	22.6	SunPower	4 x 11	21.3x56.9	22.0	69.2 *
CMP22175S	175	34.7	6.4	29.4	6.0	23.7	SunPower	7 x 7	36.2x37	22.0	80.8 *
CMP22200S	200	38.9	6.6	33.0	6.0	23.7	SunPower	5 x 11	26.8x56.9	23.8	92.3 *
CMP22225S	225	46.7	6.1	39.6	5.7	23.7	SunPower	6 x 11	31.1x56.3	32.2	103.8
Rigid - Polycrysta	alline										
CMP21100P	100	21.6	6.2	17.5	5.7	16.7	Q Cell	4 x 6	26.4x39.4	18.0	34.3
CMP21150P	150	21.9	9.2	17.6	8.5	17.1	Q Cell	6 x 6	39x39.5	26.5	51.0
CMP21160PK	160	21.9	9.7	17.6	9.0	18.0	Q Cell	4 x 9	26.3x59	26.5	54.0
										* Using MP	PT Controller *

Custom Marine Products 2020

Semi-flexible

Semi-rigid

Rigid Polycrystalline

Rigid Monocrystalline

Below is contact information should you have questions or comments.

Custom Marine Products custommarineproducts.com Tom Trimmer <u>tom@custommarineproducts.com</u> 248 705 8337

