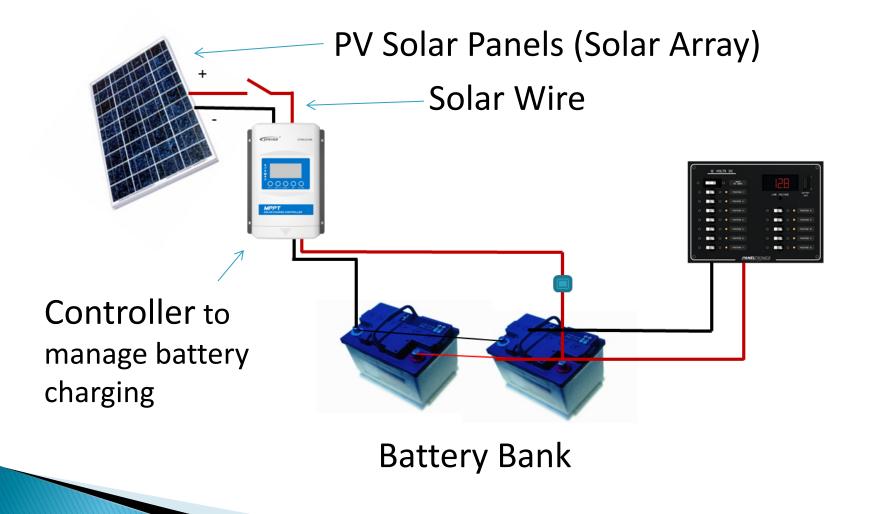
Selecting the Proper Solar System for Your Boat

> Tom Trimmer Custom Marine Products Custom Marine Products 2019

Introduction: I Am a Cruising Sailor -Having Sufficient Power Onboard is Important

Refrigeration started my quest for POWER



Topics for Discussion

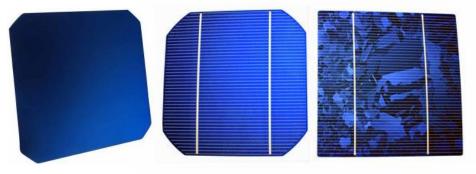
- Introduction to PV solar panels
- Introduction to solar controllers
- What is a balanced solar system?
- Designing your solar system
 - A case study
- Selecting the proper equipment
- Installation ideas
- Q&A

Slides at: custommarineproducts.com Support, Manuals & Info

Components of a PV Solar System (PhotoVoltaic)

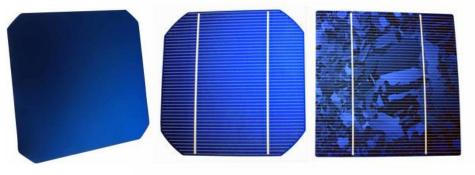
A Few things to Know About PV Solar Panels (PhotoVoltaic)

Monocrystalline or Polycrystalline?


Grade A or B or C?

Rigid or Semi-flexible?

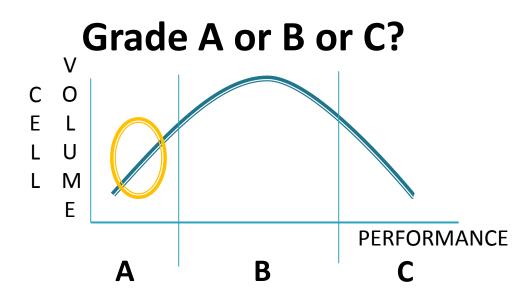
Commercial or Marine?


Monocrystalline or Polycrystalline?

Monocrystalline

- Generally higher efficiency solar cells 16 % to 24%
- Generally higher output than polycrystalline in full sun
- More expensive than polycrystalline (\$3 \$8 per watt)
 Polycrystalline
- Cell efficiency typically 13% to 16%
- Generally less sensitive to shading and clouds than monocrystalline
- Less expensive that monocrystalline (\$2 \$5 per watt)

Monocrystalline or Polycrystalline?

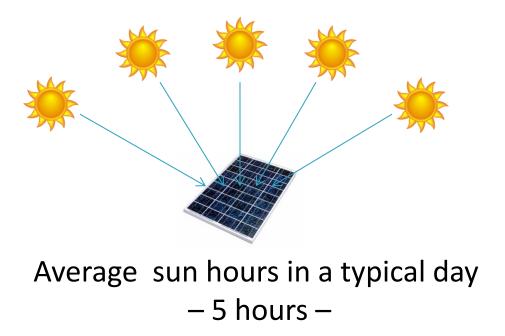

Monocrystalline

- Generally higher efficiency solar cells 16 % to 24%
- Generally higher output than polycrystalline in full sun
- More expensive than polycrystalline (\$3 \$8 per watt)

Polycrystalline

- Cell efficiency typically 13% to 16%
- Generally less sensitive to shading and clouds than monocrystalline
- Less expensive that monocrystalline (\$2 \$5 per watt)

Note: Efficiency of thin-film panels is only 7% - 12%



All solar cells are not created equal

- Cells are graded under a standard artificial light and sorted by power output.
- The distribution of performance is a Bell Curve with most cells being a B grade.
- Grade A will typically perform above rating in full sun light.
- Grade B is typically used for residential and solar farms.
- Grade A+ is desirable on a boat where space is limited.

We want maximum output per square inch.

Why the Quality of Solar Cells is Important

It's all about watt hours

Higher performance solar cells produce more power at sub-optimal sun angles than lower performance solar cells - up to 30% more power.

A lower performance 100 watt panel will produce up to 100 watts x 5 hours or 500 watt hours in a day.

A higher performance 100 watt panel will produce up to 650 watt hours in a day.

That's 150 watt hours or 12.5 amp hrs. more power

Rigid or Semi-flexible?

SunPower semi-flexible panel performance is comparable to rigid panels

Rigid panels

- Have a life of at least 15 years robust
- Excellent for pole, frame and davit mounting Semi-flexible panels
- Have a life span of at least 7 years
- Excellent for bimini and cabin top mounting
- Light weight
- Can be walked on
- Sensitive to shading

Rigid or Semi-flexible?

SunPower semi-flexible panel performance is comparable to rigid panels

Rigid panels

- Have a life of at least 15 years robust
- Excellent for pole, frame and davit mounting

Semi-flexible panels

- Have a life span of at least 7 years
- Excellent for bimini and cabin top mounting
- Light weight
- Some can be walked on (not recommended)
- Some are sensitive to shading

How is a Marine Solar Panel Different from a Commercial Solar Panel?

Marine Solar Panel

- Junction box is filled with inert silicone to prevent corrosion
- Rigid panels have strong frames and extra sealants
- Panels have high output power performance Grade A+ cells
- Output compatible with 12 or 24 volt battery bank systems
- Panel is wired to accommodate shading

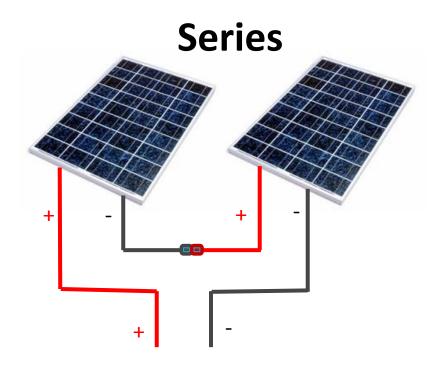
Commercial Solar Panel

- Junction box not filled with inert material
- Frames designed for rack mounting
- Output typically 30+ volts
- Panel cells are typically Grade B or B+

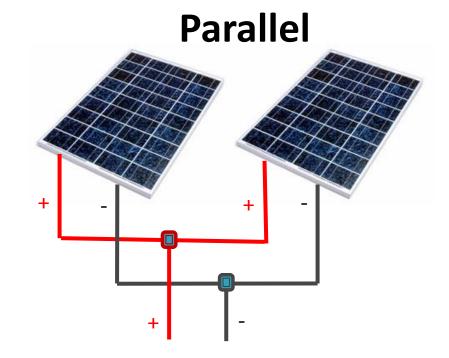
How is a Marine Solar Panel Different from a Commercial Solar Panel?

Marine Solar Panel

- Junction box is filled with inert silicone to prevent corrosion
- Rigid panels have strong frames and extra sealants
- Panels have high output power performance Grade A+ cells
- Output compatible with 12 or 24 volt battery bank systems
- Panel is wired to accommodate shading


Commercial Solar Panel

- Junction box not filled with inert material
- Frames designed for rack mounting
- Output typically 30+ volts
- Panel cells are typically Grade B or B+



Wiring Multiple Solar Panels

100 Watt, 18 Volt, 5.6 Amp

18 Volts **11.1** Amps

A Few Things to Know About Solar Controllers

The purpose of a solar controller is to:

- Optimize the power output of the solar array
- Regulate the amount of power going to the battery bank
- Prevent battery bank overcharging and overheating
- Prevent solar panels from absorbing power at night

There Are Two Types of Solar Controllers

(PWM) Pulse Width Modulation

- Pulse width modulation provides efficient battery charging
- Streams full power to battery bank when bank is low
- Useful if panel voltage is similar to battery voltage
- Less expensive than MPPT controllers

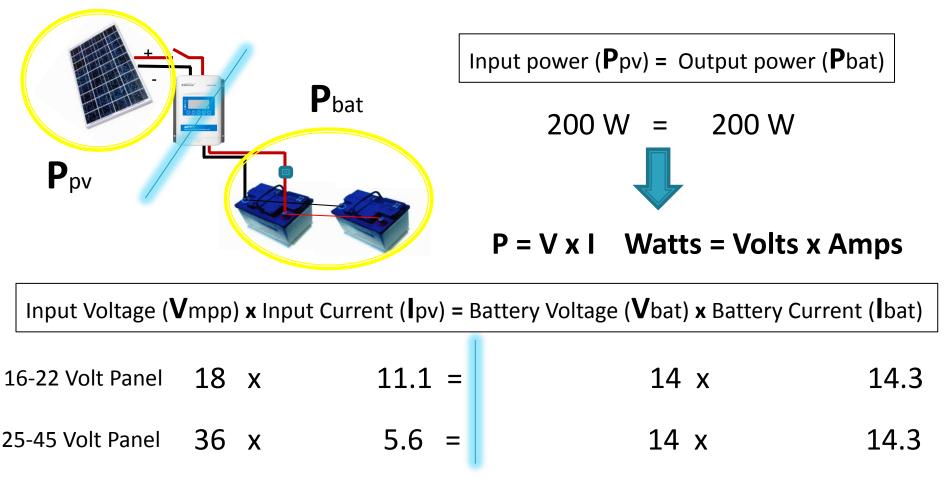
(MPPT) Maximum Power Point Tracking

- Essential to use with commercial solar panels (usually above 30 volts)
- Optimizes power from the solar array
- Reduces voltage to 14 volts and increases amperage
 Pw = V * I (Watts = Volts x Amps)
- Of little value for panels rated under 20 volts and for small solar arrays (under 200 watts).
- More expensive than PWM controllers

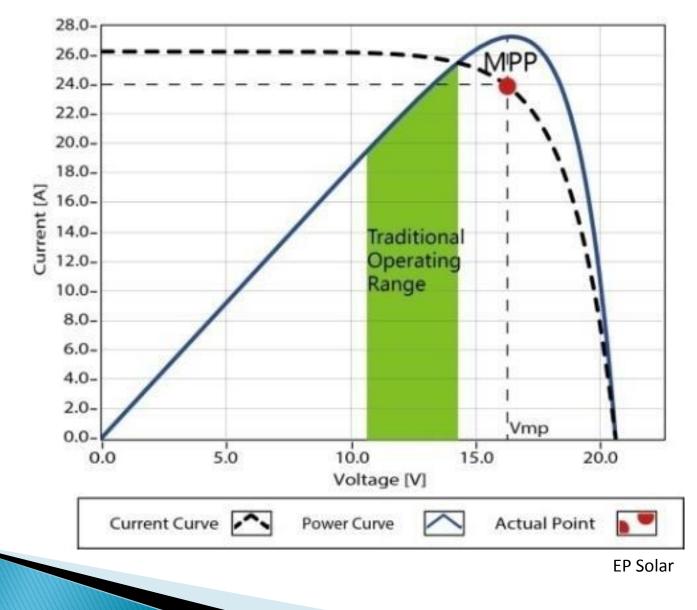
There Are Two Types of Solar Controllers

(PWM) Pulse Width Modulation

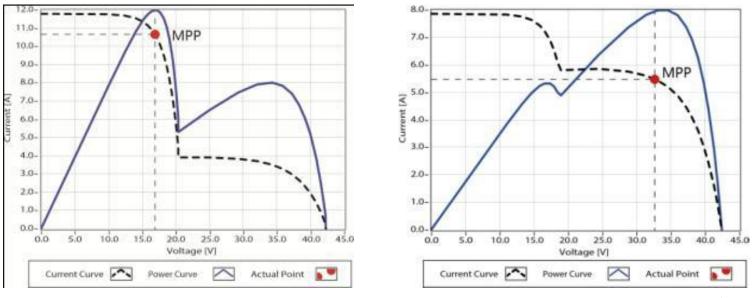
- Pulse width modulation provides efficient battery charging
- Streams full power to battery bank when bank is low
- Useful if panel voltage is similar to battery voltage
- Less expensive than MPPT controllers


(MPPT) Maximum Power Point Tracking

 Essential to use with commercial solar panels (usually above 30 volts)

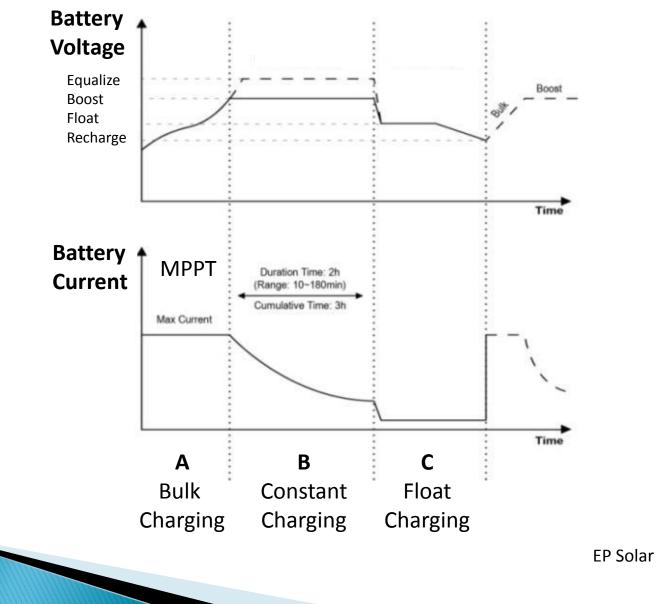

- Optimizes power from the solar array
- Reduces voltage to 14 volts and increases amperage
 Pw = V * I (Watts = Volts x Amps)
- Of limited value for panels rated under 20 volts and for small solar arrays (under 100 watts).
- More expensive than PWM controllers

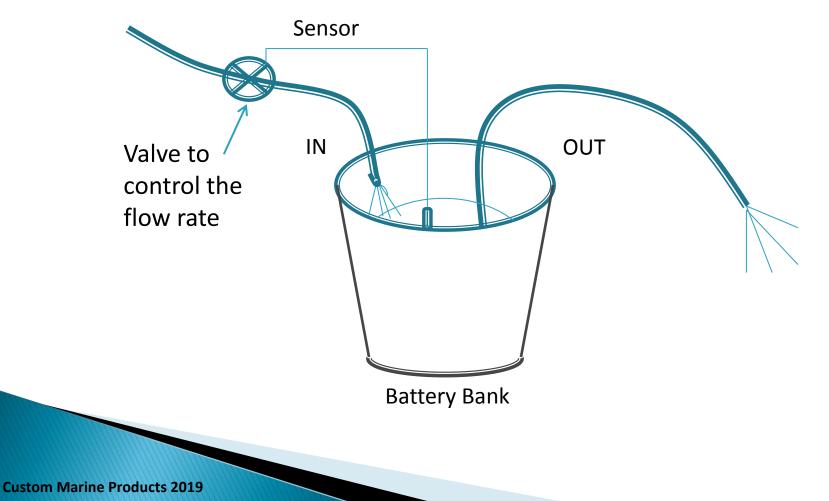
Maximum Power Point Tracking Technology



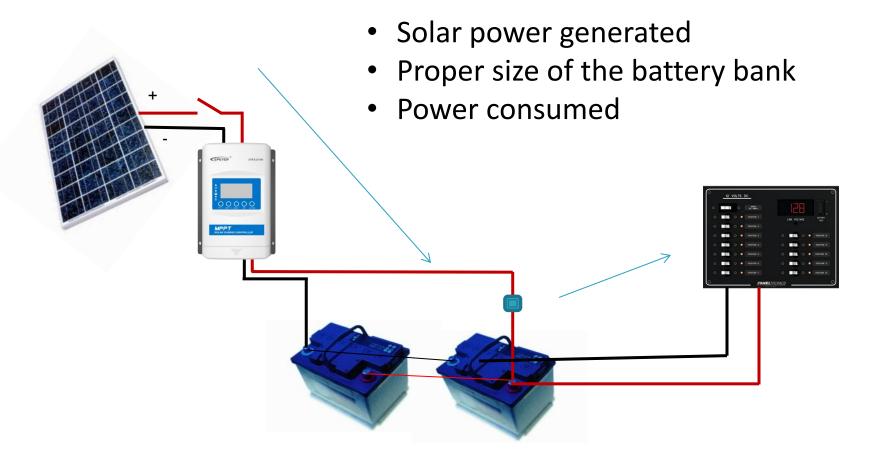
At 100% conversion efficiency

Maximum Power Point Curve


Maximum Power Point Tracking Technology Impact of Shading and Dissimilar Panels


Multi - MPP

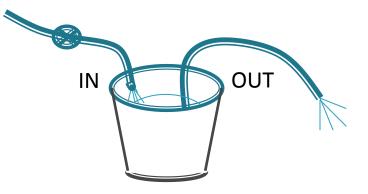
Battery Charging Stage Curve



A Balanced System

- Water in
- Size of the bucket
- Water consumed




A Balanced System

Sizing Your Battery Bank

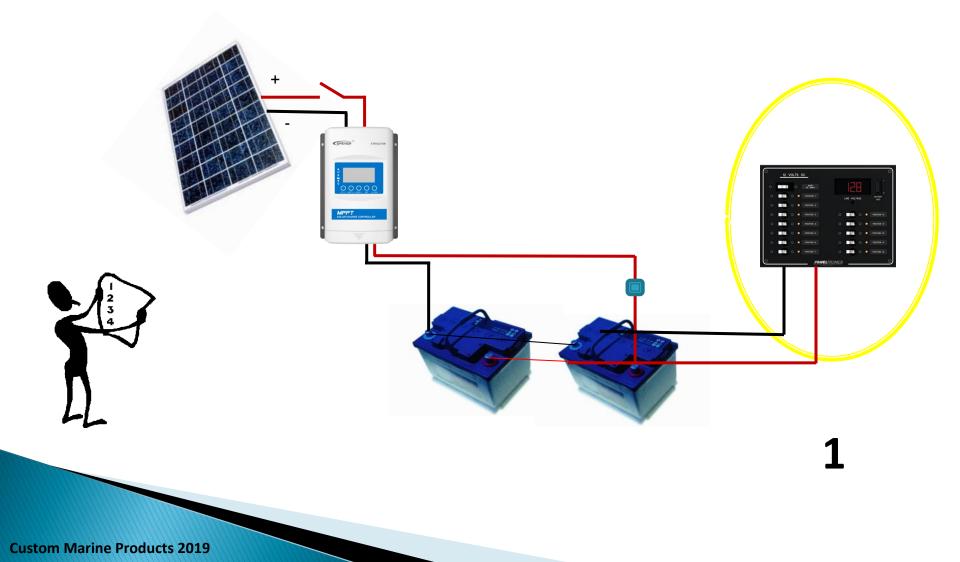
Battery capacity is measured in Amp Hours

A limited capacity battery bank

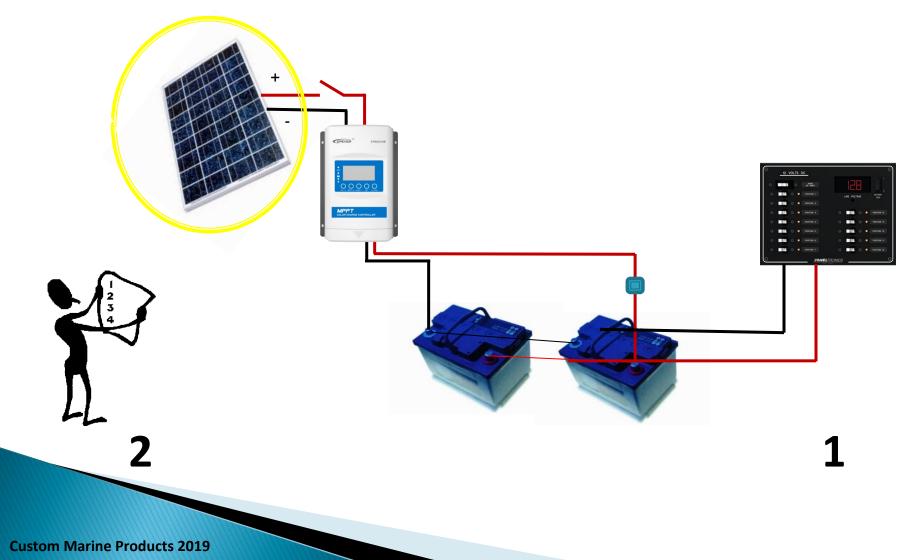
- Unable to store all the power your solar panel produces
- No reserve for cloudy days
- Must always be monitored because continually stressed

Your battery bank should have the capacity to support your boat's power requirements for at least 24 to 48 hours

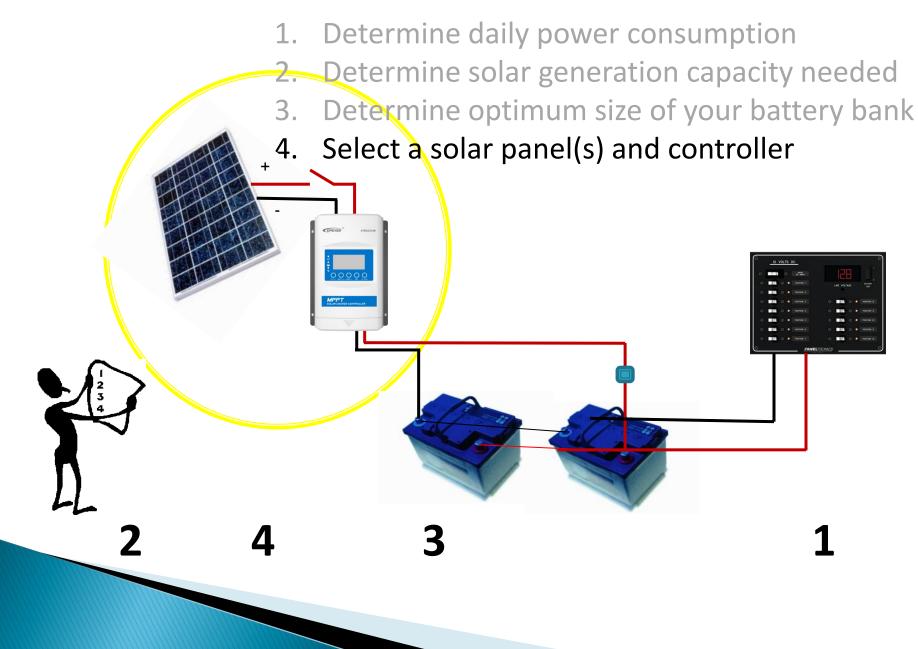
Our Case Study Boat


What Do You Want to Achieve with Your Solar System?

- A. Keep the batteries charged while on a mooring.
- B. Supplement current power generation capability.(Run my engine less to charge the batteries)
- C. Generate all the power needed while at anchor.
- D. Generate all the power needed on passage and at anchor.


What Do You Want to Achieve with Your Solar System?

- A. Keep the batteries charged while on a mooring.
- B. Supplement current power generation capability.(Run my engine less to charge the batteries)
- C. Generate all the power needed while at anchor.
- D. Generate all the power needed on passage and at anchor.


1. Determine daily power consumption

- 1. Determine daily power consumption
- 2. Determine solar generation capacity needed

- 1. Determine daily power consumption
- 2. Determine solar generation capacity needed
- 3. Determine optimum size of your battery bank

Appliance	Amps	Hours	Hours	Daily AH *	Daily AH
		at Anchor	on Passage	at Anchor	on Passage
Refrigeration	5	8	8	40	40
Radar	4		4	0	16
Computer - Laptop	3	1	10	3	30
Autopilot	4		10	0	40
Cabin Lights (LED)	1	4		4	0
Nav/Anchor Lights	0.2	10	10	2	2
Stereo	1	3	3	3	3
VHF Radio	0.5	8	8	4	4
Instruments	1		8	0	8
Pressure Water	6	0.25	0.1	1.5	0.6
Phone Charger	1	2	2	2	2
Other				0	0
Other				0	0
Total Amp Hours				59.5	145.6

* AH – Amp Hours

Step 1

Appliance	Amps		ŀ	lours	Hours	Daily AH *	Daily AH	
			at	Anchor	on Passage	at Anchor	on Passage	
Refrigeration		5		8	8	40	40	
Radar		4			4	0	16	
Computer - Laptop		3		1	10	3	30	
Autopilot		4			10	0	40	
Cabin Lights (LED)		1		4		4	0	
Nav/Anchor Lights		0.2		10	10	2	2	
Stereo		1		3	3	3	3	
VHF Radio		0.5		8	8	4	4	
Instruments		1			8	0	8	
Pressure Water		6		0.25	0.1	1.5	0.6	
Phone Charger		1		2	2	2	2	
Other						0	0	
Other						0	0	
Total Amp Hours						59.5	145.6	

Amp Draw of Each Appliance

Step 1

Appliance	Α	mps	Hours				Hours	Daily AH *	Daily AH	
				at Anchor			Passage	at Anchor	on Passage	
Refrigeration		5			8		8	40	40	
Radar		4					4	0	16	
Computer - Laptop		3			1		10	3	30	
Autopilot		4					10	0	40	
Cabin Lights (LED)		1			4			4	0	
Nav/Anchor Lights		0.2			10		10	2	2	
Stereo		1			3		3	3	3	
VHF Radio		0.5			8		8	4	4	
Instruments		1					8	0	8	
Pressure Water		6			0.25		0.1	1.5	0.6	
Phone Charger		1			2		2	2	2	
Other								0	0	
Other								0	0	
Total Amp Hours								59.5	145.6	

Hours Used of Each Appliance

Step 1

Appliance	Α	mps	Hours				Hours	Daily AH *		Daily AH	
			at Anchor			on Passage		at Anchor		on Passage	
Refrigeration		5			8		8		40		40
Radar		4					4		0		16
Computer - Laptop		3			1		10		3		30
Autopilot		4					10		0		40
Cabin Lights (LED)		1			4				4		0
Nav/Anchor Lights		0.2			10		10		2		2
Stereo		1			3		3		3		3
VHF Radio		0.5			8		8		4		4
Instruments		1					8		0		8
Pressure Water		6			0.25		0.1		1.5		0.6
Phone Charger		1			2		2		2		2
Other									0		0
Other									0		0
Total Amp Hours									59.5		145.6

Amps X Hours = Daily Amp Hours

Step 1

Sample Power Consumption Worksheet

Appliance	Amps		Hours		Hours		Daily AH *		Daily	AH
			at	Anchor	on Passage		at	t Anchor	on Passage	
Refrigeration		5		8		8		40		40
Radar		4				4		0		16
Computer - Laptop		3		1		10		3		30
Autopilot		4				10		0		40
Cabin Lights (LED)		1		4				4		0
Nav/Anchor Lights		0.2		10		10		2		2
Stereo		1		3		3		3		3
VHF Radio		0.5		8		8		4		4
Instruments		1				8		0		8
Pressure Water		6		0.25		0.1		1.5		0.6
Phone Charger		1		2		2		2		2
Other								0		0
Other								0		0
Total Amp Hours								59.5		145.6

Amps X Hours = Daily Amp Hours

Step 1

Appliance	Amps	Hours	Hours	Daily AH *	Daily AH	Step 1
		at Anchor	on Passage	at Anchor	on Passage	•
Refrigeration	5	8	8	40	40	
Radar	4		4	0	16	
Computer - Laptop	3	1	10	3	30	
Autopilot	4		10	0	40	
Cabin Lights (LED)	1	4		4	0	
Nav/Anchor Lights	0.2	10	10	2	2	
Stereo	1	3	3	3	3	
VHF Radio	0.5	8	8	4	4	
Instruments	1		8	0	8	
Pressure Water	6	0.25	0.1	1.5	0.6	
Phone Charger	1	2	2	2	2	
Other				0	0	
Other				Ō	0	
Total Amp Hours			(59.5	145.6	
Equipment going thro	ugh an	Inverter (N	Multiply by 1	.2 for inverter	inefficiency)	
Microwave	80	0.1		9.6	0	
Windlass **				0	0	/
Other				0	0	
Other				0	0	
Total Amp Hours				9.6	0	
						K
Total Amp Hours Cons	sumed p	er Day		69.1	145.6	>

Determine Solar Capacity Needed

			At Anchor	On Passage
Total Amp Hours Consumed	per Day		69.1	145.6
Battery Charging Voltage		14		
Watt Hours per Day to Reple	967.4	2,038.4		

Note: Average hours of sun per day is based on the sun angle throughout the day.Note: 5 is a good number for horizontal panels, 7 for panels with tilt & rotate

Step 2

PV Solar Panel Capacity Analysis			
Average Hours of Sun per Day	5		
Watts per Day of Solar to Replenish E	attery Bank	193.5	407.7
		1	~

Watts of Solar Power Required

Watts = Volts x Amps

Sample Power Consumption Worksheet

Appliance	Amps	Hours	Hours	Daily AH *	Daily AH
		at Anchor	on Passage	at Anchor	on Passage
Refrigeration	5	8	8	40	40
Radar	4		4	0	16
Computer - Laptop	3	1	10	3	30
Autopilot	4		10	0	40
Cabin Lights (LED)	1	4		4	0
Nav/Anchor Lights	0.2	10	10	2	2
Stereo	1	3	3	3	3
VHF Radio	0.5	8	8	4	4
Instruments	1		8	0	8
Pressure Water	6	0.25	0.1	1.5	0.6
Phone Charger	1	2	2	2	2
Other				0	0
Other				0	0
Total Amp Hours				59.5	145.6
Equipment going thro	ough an	Inverter (I	Multiply by 1	.2 for inverter	inefficiency)
Microwave	80	0.1		9.6	0
Windlass **				0	0
Other				0	0
Other				0	0
Total Amp Hours				9.6	0
Total Amp Hours Cons	sumed p	oer Day		69.1	145.6
* AH - Amp Hours - A	mps of c	urrent cons	umed in one	hour	
** Windlass is often no	ot consid	dered becau	ise engine alt	ernator is runn	ing when used
Battery Charging Volt	age		14		
Watt Hours per Day t	o Reple	nish Batter	y Bank	967.4	2,038.4
PV Solar Panel Cap	acity A	nalysis			
Average Hours of Sun	per Da	y	5		
Watts per Day of Sola	r to Rep	olenish Batt	ery Bank	193.5	407.7

Available at: custommarineproducts.com

- Support

- Manuals & Info

Battery Bank Capacity in our Example

Step 3

		At Anchor	On Passage			
Total Amp Hours Consumed per Day		69.1	145.6			
Amp hours consumed per day Days to run on batteries only Amp hours required Use 50% of battery bank capacity Battery bank capacity needed (a		69.1 X 2 138.2 276.4	145.6 2 291.2 582.4			
LiFePo4 Use 90%	LiFePo4 Use 90% capacity					
	battery ba	can use 50% ank capacity a chealthy. (lea	and keep			

Our Findings

Generate All the Power Needed While at Anchor

Power consumption

Optimum battery capacity

Rated panel wattage needed

70 to 145 amp hours

300 to 600 amp hours (lead acid)

200 to 400 watts (roughly)

Watts = Volts x Amps

What Do You Want to Achieve with Your Solar System?

Solar Array Capacity A. Keep the batteries charged while on a mooring B. Supplement current power generation capability

- C. Generate all the power needed while **200 Watts** at anchor
- D. Generate all the power needed on passage and at anchor

400 Watts

What Do You Want to Achieve with Your Solar System? Step 4

		Scenarios		
	Α	В	С	D
Amp Hrs Consumed per Day	30	69	69	146
Days at Anchor	1	3	3	1
Amp Hrs Required	30	207	207	146
Battery Bank Rated Amp Hrs.	240	240	240	240
Battery Draw Down %	0%	40%	0%	0%
Battery Amps Drawn	-	96	_	-
Amp Hr. Deficit	30	111	207	146
Amp Hr. Deficit per Day	30	37	69	146
Watt Hr. Deficit per Day	420	518	967	2,044
Average Hours of Sun per Day	5.0	5.0	5.0	5.0
Watts per Day of Solar Req'd <	84	103.6	193.5	408.8

A. Keep the batteries charged while on a mooring

B. Supplement current power generation capability

C. Generate all the power needed while at anchor

D. Generate all the power needed on passage and at anchor

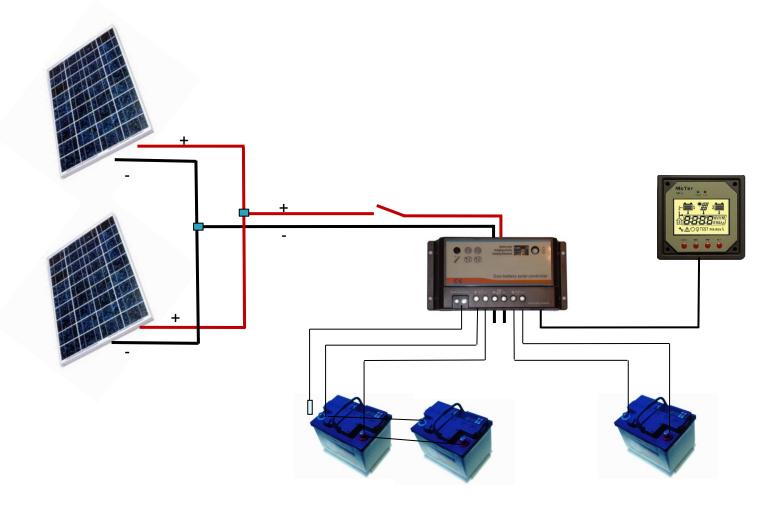
Selecting a Solar Controller

D Α В С 408.8 Watts per Day of Solar Reg'd 84 103.6 193.5 With MPPT Controller <u>⊳</u>+ 5% Watts of Solar Needed 88.2 108.8 203.2 429.2 With PWM Controller 20.0 20.0 20.0 Solar Panel Voltage (Vmp) 20.0 13.8 Solar Panel Amps (Imp) 6.0 7.4 29.2 Watts of Solar Needed 584 120 148 276

PWM Controller

- If solar array is 20 Volts (Vmp) or less
- If solar array is 100 watts or less

MPPT Controller


- If solar array is greater than 18 volts
- If solar array is greater than 100 watts

Note: solar watts / 13V = amp capacity

203.2 W / 13 V = 15.6 A use a 20 amp controller

Step 4

A Complete and Balanced Solar Power System

Power Consumption Worksheet with PV Solar Panel Sizing

Daily Power Consumption Analysis						Solar Panel Capacity (Wat	ts) Calcu	lation - 4 S	Scenario	S
Appliance	Amps	Hours	Hours	Daily AH *	Daily AH			Scenarios		
		at Anchor	on Passage	at Anchor	on Passage		Α	В	С	D
Refrigeration	5			40	40	Amp Hrs Consumed per Day	30	69	69	146
Radar	4		4	0	16	Days at Anchor	1	3	3	1
Computer - Laptop	3	1	10	3	30	Amp Hrs Required	30	207	207	146
Autopilot	4		10	0	40					
Cabin Lights (LED)	1	4		4	0	Battery Bank Rated Amp Hrs.	240	240	240	240
Nav/Anchor Lights	0.2	10	10	2	2	Battery Draw Down %	0%	40%	0%	0%
Stereo	1	3	3	3	3	Battery Amps Drawn	-	96	-	-
VHF Radio	0.5	8		4	4	Amp Hr. Deficit	30	111	207	146
Instruments	1		8	0	8	Amp Hr. Deficit per Day	30	37	69	146
Pressure Water	6	0.25	0.1	1.5	0.6	Watt Hr. Deficit per Day	420	518	967	2,044
Phone Charger	1	2	2	2	2	Average Hours of Sun per Day	5.0	5.0	5.0	5.0
Other				0	0	Watts per Day of Solar Reg'd	84		193.5	408.8
Other				0	0					
Total Amp Hours				59.5	145.6	With MPPT Controller				
Equipment going thro	ough an	Inverter (Multiply by 1					108.8	203.2	429.
Microwave	80			9.6	0	With PWM Controller				
Windlass **				0	0	Solar Panel Voltage (Vmp)	20.0	20.0	20.0	20.0
Other				0	0	Solar Panel Amps (Imp)	6.0	7.4	13.8	29.2
Other				0	0	Watts of Solar Needed	120	148	276	584
Total Amp Hours				9.6	0					
						Scenarios				
Total Amp Hours Con	cumod r	or Dav		69.1	145.6	A. On a mooring with refrigerat	ion			
Total Allip Hours con	sumeu p	Jei Day		09.1	145.0	B. 3 days at anchor supplement		of battony cr	nacity	
* AH - Amp Hours - A	mpc of c	urrent conc	umad in ana	our		C. 3 days at anchor with no bat			арасну	
** Windlass is often n	•				ing when used					
	ot consid	uereu becat	use engine all	ernator is runni	ing when used	D. All power from solar with ma	ix power u	sage		
Patton: Changing Valt			14							
Battery Charging Volt	age		14							
14/a44 aa.u.a.u. Dav. 4	a Davila	ulah Dattau	. Davela	067.4	2 020 4	1. Determine your of			ption	
Watt Hours per Day t	о керіе	nish Batter	у вапк	967.4	2,038.4	2. Assess your batte	• •	•	-	
	•••••					 Calculate solar ca 	pacity re	equired	-	
PV Solar Panel Cap	acity A	nalysis				4. Select solar pane	l(s) and o	ontroller		
Average Hours of Sun	per Da	y	5							
								Custom	Marine F	Products
Watts per Day of Sola	ar to Rep	olenish Bat	tery Bank	193.5	407.7			customma	arineprod	ucts.com
Note: 5 is a good num	ber for h	norizontal pa	anels, 7 for pa	nels with tilt &	rotate	info@cu	stommarin	eproducts.co	om 2487	05-8337

High Performance Marine PV Solar Panel Specifications

Model Part Number	Nominal Peak Power Watts-Wp	Open Circuit Voltage Voc	Short Circuit Current Isc	Nominal Voltage Vmp	Nominal Power Current Imp	Cell	Solar Cell Mfg. & Type	Cell Layout	Panel Size Inches	Weight Ibs.	Amp Hrs per Day @ 6 Hrs Sun	
Semi-flexible - Monocrystalline												
CMP23055FW	55	23.4	3.1	19.8	2.9	22.0	SunPower	4 x 8	21.25x22.8	3.3	25.4	*
CMP23055FB	55	23.4	3.1	19.8	2.9	22.0	SunPower	4 x 8	21.25x22.8	3.3	25.4	*
CMP23070F	70	23.4	3.9	19.8	3.6	22.8	SunPower	4 x 5	21.25x27.75	3.8	32.3	*
CMP23110F	110	23.4	6.0	19.8	5.6	23.2	SunPower	4 x 8	21.25x42.3	5.8	50.8	*
CMP23120F	120	24.0	6.5	20.0	6.0	20.4	SunPower	4 x 10	22.0x52.25	6.1	55.4	*
CMP23130F	130	26.3	6.2	22.3	5.8	23.7	SunPower	4 x 9	21.25x47.25	5.2	60.0	*
CMP23145F	145	27.8	6.8	23.2	6.3	23.7	SunPower	4 x 10	21.25x52.4	6.6	66.9	*
Rigid - Monocry	/stalline											
CMP22100S	100	21.9	6.8	18.6	5.8	20.2	SunPower	4 x 8	21.3x41.7	20.3	46.2	*
CMP22140S	140	29.3	6.1	24.8	5.7	23.7	SunPower	5 x 8	26.8x41.7	22.0	64.6	*
CMP22150SR	150	29.3	7.0	24.8	6.5	23.7	SunPower	4 x 12	21.3x56.9	26.5	69.2	*
CMP22175S	175	36.4	6.3	30.3	5.8	22.8	SunPower	7 x 7	36.2x37	26.5	80.8	*
CMP21105M	105	21.6	6.5	17.5	6.0	17.9	Bosch	4 x 6	26.4x39.4	18.0	36.0	
Rigid - Polycrys	talline											
CMP21100P	100	21.6	6.2	17.5	5.7	16.7	Q Cell	4 x 6	26.4x39.4	18.0	34.3	
CMP21150P	150	21.9	9.2	17.6	8.5	17.1	Q Cell	6 x 6	39x39.5	26.5	51.0	
CMP21160PK	160	21.9	9.7	17.6	9.0	18.0	Q Cell	4 x 9	26.3x59	26.5	54.0	

Rigid Monocrystalline

Selecting the Proper Solar System for Your Boat

Q&A

Tom Trimmer Custom Marine Products

Solar Panel Installation Ideas

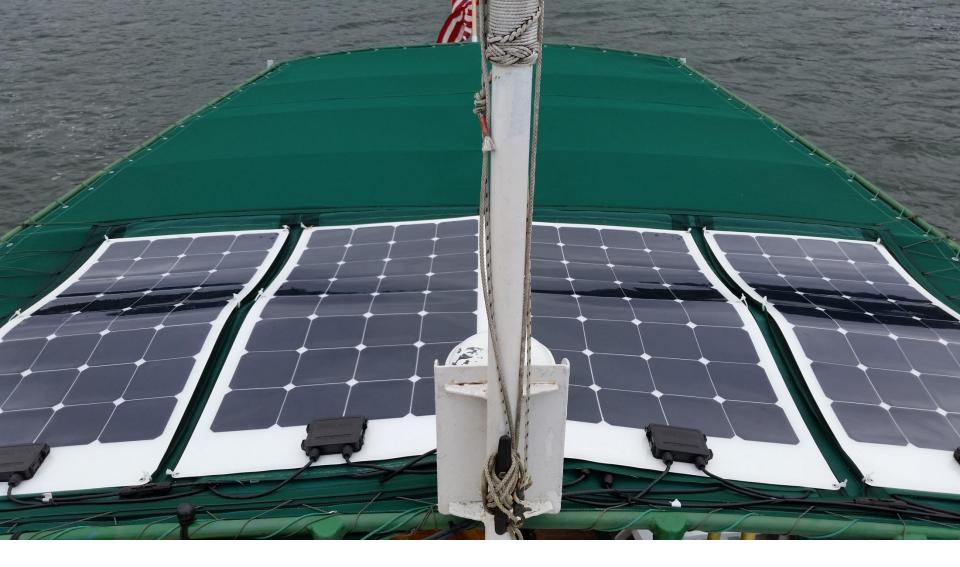
Semi-Flexible Solar Panels

- Canvas biminis
- Hard tops

Rigid Solar Panels

- Canvas biminis
- Hard tops
- Top-of-pole systems
- Dinghy davits

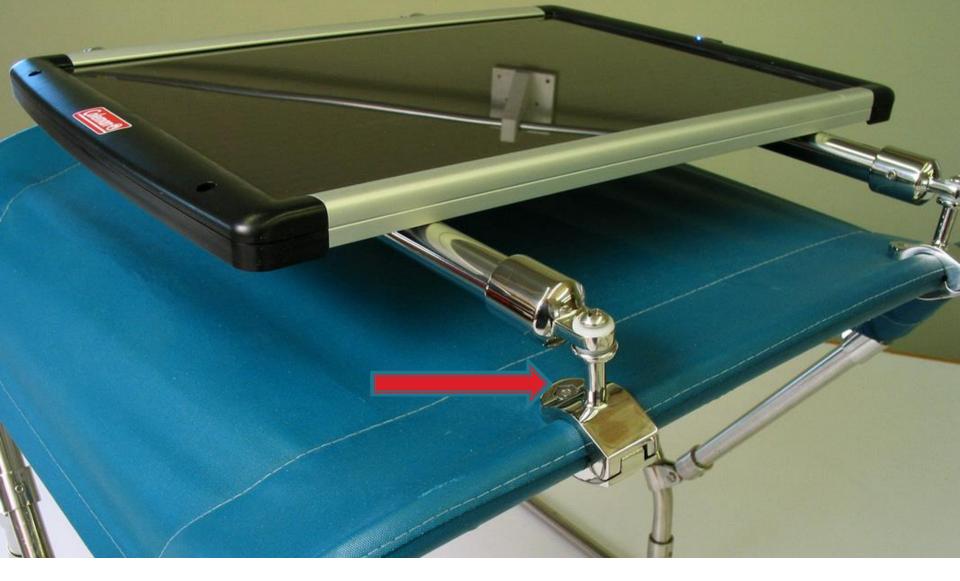
See Gallery of Installations at


custommarineproducts.com for more ideas.

100 Watt Semi-flexible Panels Zippered On

Two 50 Watt Semi-flexible Panels Bolted On

Four 100 Watt Semi-flexible Panels Sewn On


Six 100 Watt Semi-flexible Panels Sewn On

Two 110 Watt Semi-flexible Panels Bolted On

110 Watt Semi-flexible Panel Bolted On

Gemini Mounting Bracket

Two Panels on a Bimini Mounted Frame

130 Watt Panel Rotated on a Bar

Three 120 Watt Solar Panels

Three 120 Watt Solar Panels on a Hylas 49

Two Rigid Panels Cantilevered

130 Watt Rigid Panel on a Ranger Tug 32

Two 275 Watt Panels on the Pilot House of a Nordic Tug 37

Four 100 Watt Rigid Panels on a Nordic Tug 32

175 Watt Panel on a Pole with Outboard Motor Crane Tilt and Rotate

130 Watt Panel on a Pole Mount – Morgan 38

Two 90 Watt Panels Pole Mounted

(ingent)

Two 100 Watt Panels Rotatable On Dinghy Davits

