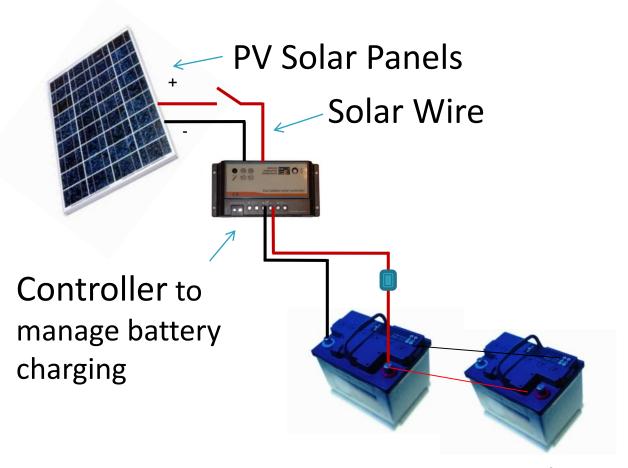


Topics for Discussion


- Introduction to PV solar panels
- Introduction to solar controllers
- What is a balanced solar system?
- Designing your solar system
 - A case study
- Selecting the proper equipment
- Installation ideas
- Q & A

Slides at: custommarineproducts.com Support, Manuals & Info

Components of a PV Solar System

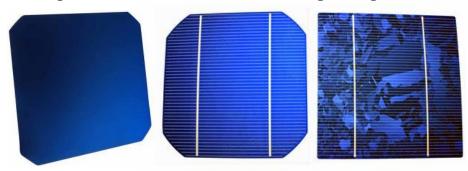
(PhotoVoltaic)

Battery Bank

A Few things to Know About PV Solar Panels

(PhotoVoltaic)

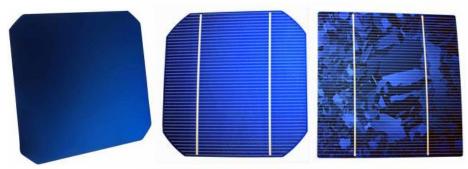
Monocrystalline or Polycrystalline?


Grade A or B or C?

Rigid or Semi-flexible?

Commercial or Marine?

Monocrystalline or Polycrystalline?

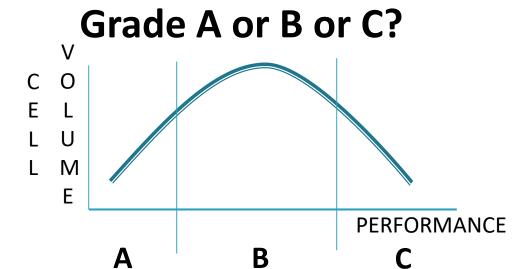

Monocrystalline

- Generally higher efficiency solar cells 15 % to 23%
- Generally higher output than polycrystalline in full sun
- More expensive than polycrystalline (\$4 \$6 per watt)

Polycrystalline

- Cell efficiency typically 13% to 16%
- Generally less sensitive to shading and clouds than monocrystalline
- Less expensive that monocrystalline (\$3 \$5 per watt)

Monocrystalline or Polycrystalline?


Monocrystalline

- Generally higher efficiency solar cells 15 % to 23%
- Generally higher output than polycrystalline in full sun
- More expensive than polycrystalline (\$4 \$6 per watt)

Polycrystalline

- Cell efficiency typically 13% to 16%
- Generally less sensitive to shading and clouds than monocrystalline
- Less expensive that monocrystalline (\$3 \$5 per watt)

Note: Efficiency of thin-film panels is only 7% - 12%

All solar cells are not created equal

- Cells are graded under a standard artificial light and sorted by power output.
- The distribution of performance is a Bell Curve with most cells being a B grade.
- Grade A will typically perform above rating in full sun light.
- Grade B is typically used for residential and solar farms.
- Grade A+ is desirable on a boat where space is limited.

We want maximum output per square inch.

Rigid or Semi-flexible?

New SunPower semi-flexible panel performance is comparable to rigid panels

Rigid panels

- Have a life of at least 15 years robust
- Excellent for pole, frame and davit mounting
 Semi-flexible panels
- Have a life span of at least 7 years
- Excellent for bimini and cabin top mounting
- Light weight
- Can be walked on
- Sensitive to shading
- Expensive

Rigid or Semi-flexible?

New SunPower semi-flexible panel performance is comparable to rigid panels

Rigid panels

- Have a life of at least 15 years robust
- Excellent for pole, frame and davit mounting

Semi-flexible panels

- Have a life span of at least 7 years
- Excellent for bimini and cabin top mounting
- Light weight
- Some can be walked on (not recommended)
- Sensitive to shading
- Expensive

How is a Marine Solar Panel Different from a Commercial Solar Panel?

Marine Solar Panel

- Junction box is filled with inert silicone to prevent corrosion
- Rigid panels have strong frames and extra sealants
- Panels have high output power performance Grade A+ cells
- Output compatible with 12 or 24 volt battery bank systems

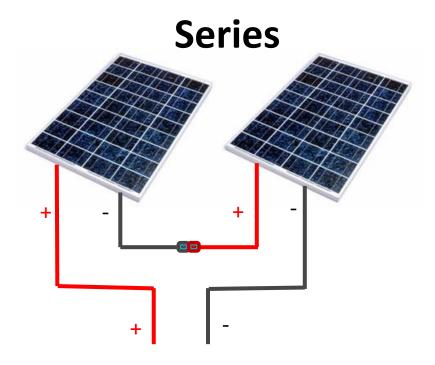
Commercial Solar Panel

- Junction box not filled with inert material
- Frames designed for rack mounting
- Output typically 30+ volts
- Panel cells are typically Grade B or B+

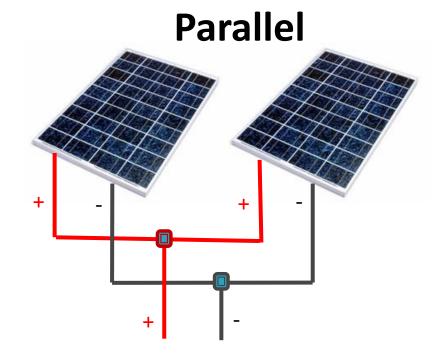
How is a Marine Solar Panel Different from a Commercial Solar Panel?

Marine Solar Panel

- Junction box is filled with inert silicone to prevent corrosion
- Rigid panels have strong frames and extra sealants
- Panels have high output power performance Grade A+ cells
- Output compatible with 12 or 24 volt battery bank systems


Commercial Solar Panel

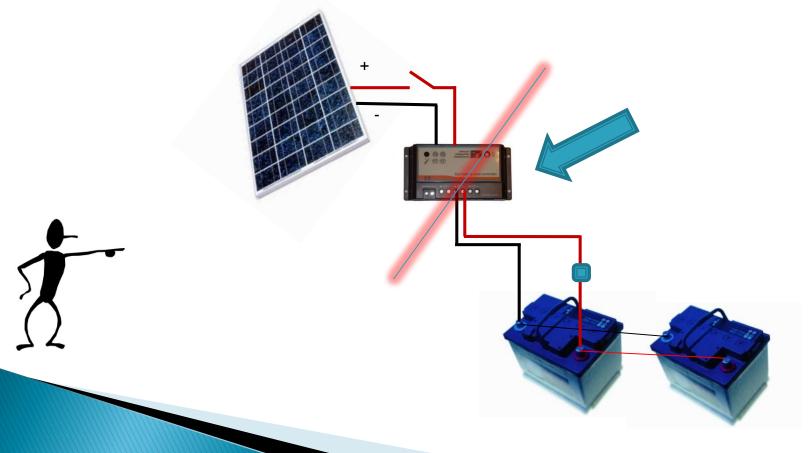
- Junction box not filled with inert material
- Frames designed for rack mounting
- Output typically 30+ volts
- Panel cells are typically Grade B or B+



Wiring Multiple Solar Panels

100 Watt, 18 Volt, 5.6 Amp

36 Volts**5.6** Amps



18 Volts11.1 Amps

A Few Things to Know About Solar Controllers

The purpose of a solar controller is to:

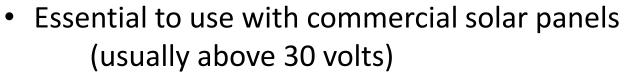
- Regulate the amount of power going to the battery bank
- Prevent battery bank overcharging and overheating
- Prevent solar panels from absorbing power at night

There Are Two Types of Solar Controllers

(PWM) Pulse Width Modulation

- Pulse width modulation provides efficient battery charging
- Streams full power to battery bank when bank is low
- Includes float and equalization modes battery health
- Less expensive than MPPT controllers

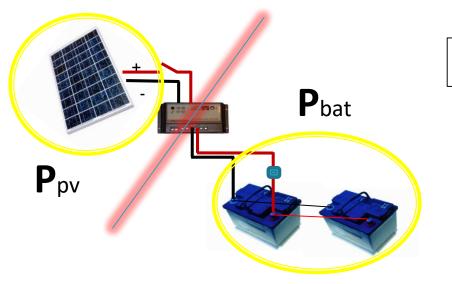
(MPPT) Maximum Power Point Tracking


- Essential to use with commercial solar panels (usually above 30 volts)
- Consumes more power than typical PWM controller
- More expensive than PWM controllers
- Reduces voltage to 14 volts and increases amperage
 Pw = V * I (Watts = Volts x Amps)
- Of little value for panels rated under 20 volts and for small solar arrays (under 200 watts).

There Are Two Types of Solar Controllers

(PWM) Pulse Width Modulation

- Pulse width modulation provides efficient battery charging
- Streams full power to battery bank when bank is low
- Includes float and equalization modes battery health
- Less expensive than MPPT controllers


(MPPT) Maximum Power Point Tracking

- Consumes more power than typical PWM controller
- More expensive than PWM controllers
- Reduces voltage to 14 volts and increases amperage
 Pw = V * I (Watts = Volts x Amps)
- Of limited value for panels rated under 20 volts and for small solar arrays (under 200 watts).

Maximum Power Point Tracking Technology

Input power (\mathbf{P} pv) = Output power (\mathbf{P} bat)

P = V x I Watts = Volts x Amps

Input Voltage (Vmpp) x Input Current (Ipv) = Battery Voltage (Vbat) x Battery Current (Ibat)

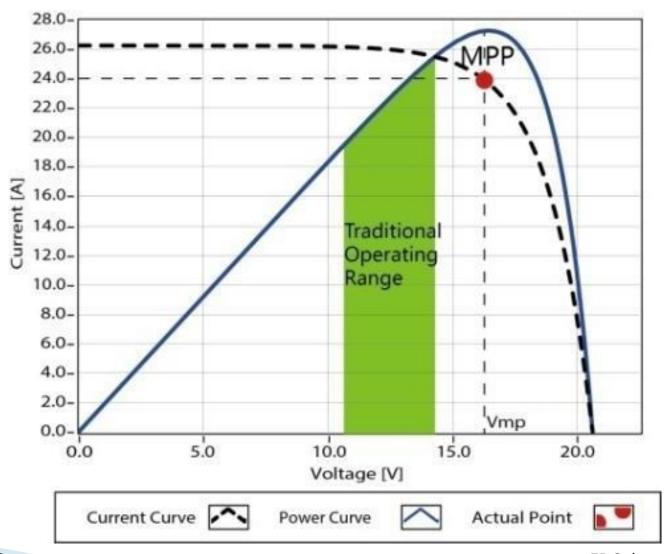
16-22 Volt Panel 18 x

11.1

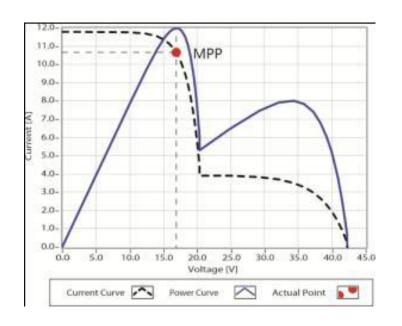
14 x

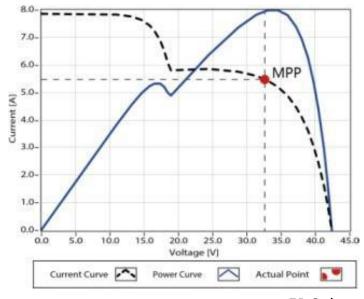
14.3

25-45 Volt Panel 36 x


5.6

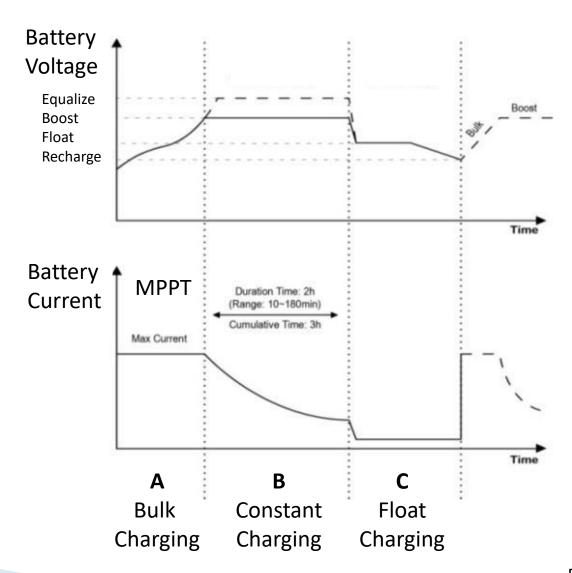
14 x


14.3

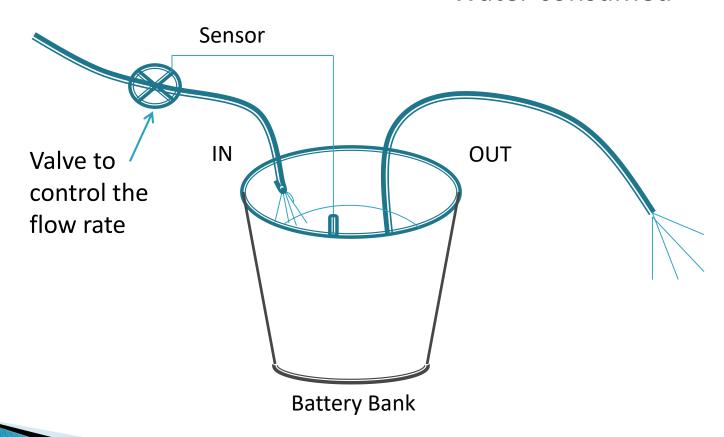

At 100% conversion efficiency

Maximum Power Point Curve

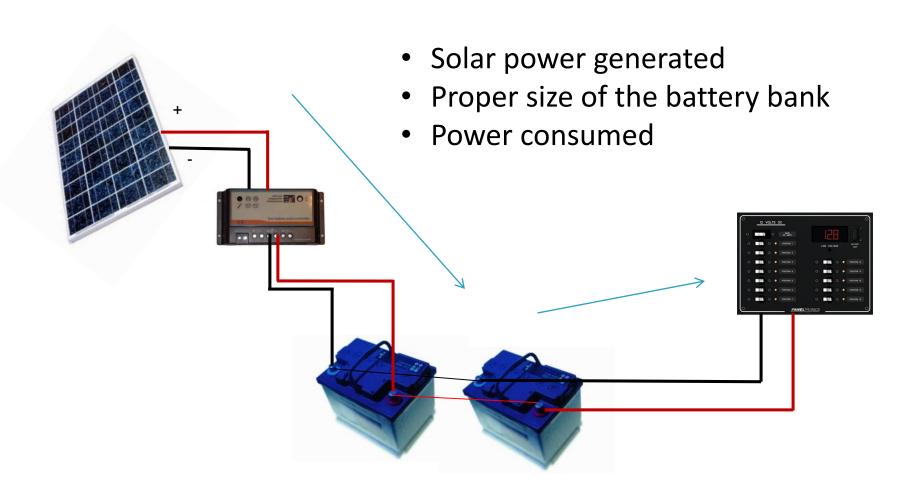
Maximum Power Point Tracking Technology Impact of Shading



EP Solar

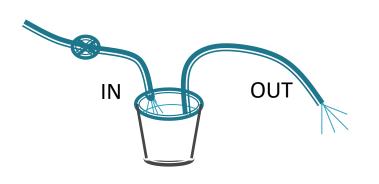

Multi - MPP

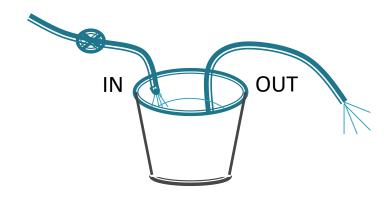
Battery Charging Stage Curve



A Balanced System

- Water in
- Size of the bucket
- Water consumed




A Balanced System

Sizing Your Battery Bank

Battery capacity is measured in Amp Hours

A limited capacity battery bank

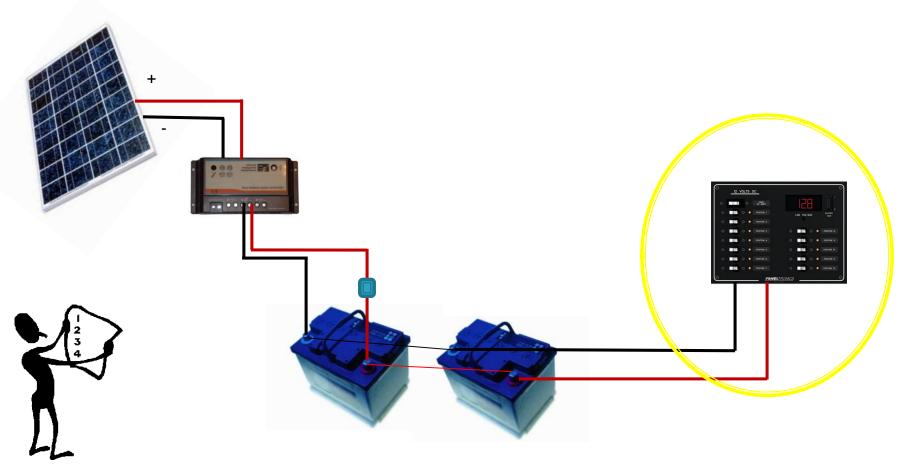
- Unable to store all the power your solar panel produces
- No reserve for cloudy days
- Must always be monitored because continually stressed

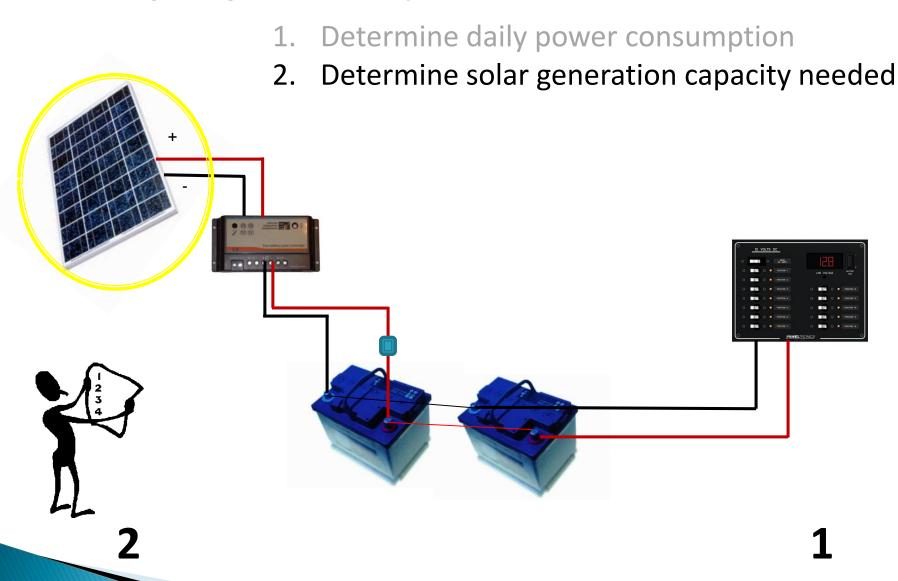
Your battery bank should have the capacity to support your boat's power requirements for at least 24 hours

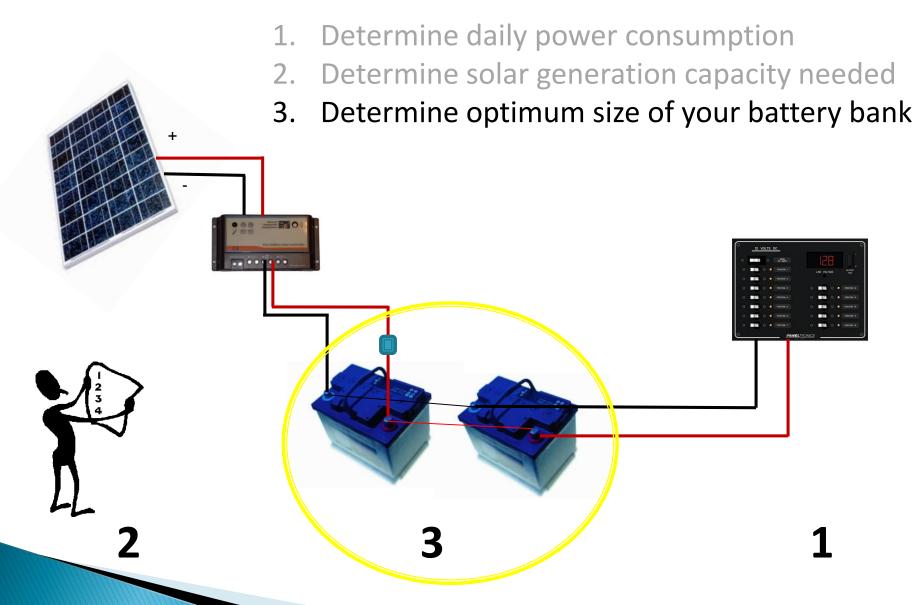
What Do You Want to Achieve with Your Solar System?

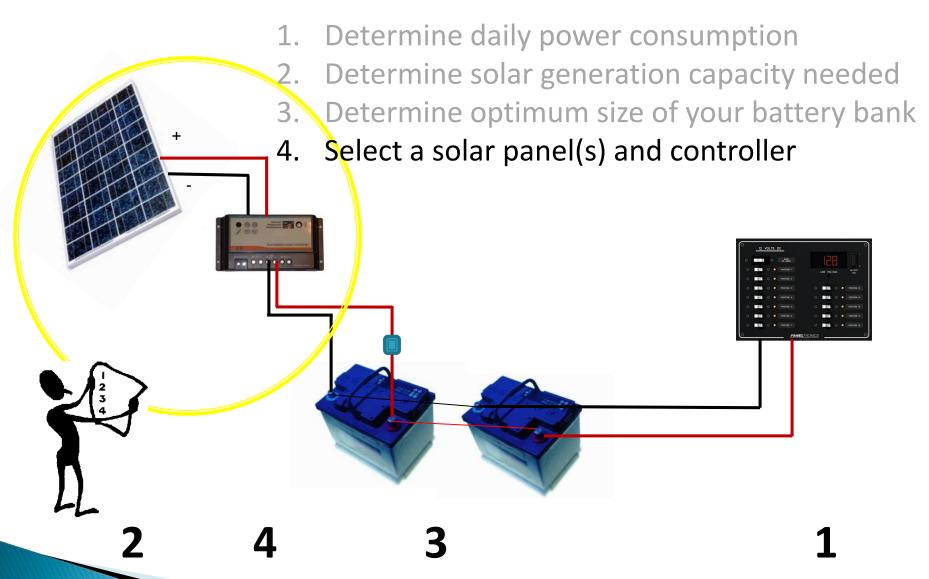
- A. Keep the batteries charged while on a mooring.
- B. Supplement current power generation capability. (Run my engine less to charge the batteries)
- C. Generate all the power needed while at anchor.

D. Generate all the power needed on passage and at anchor.


What Do You Want to Achieve with Your Solar System?


- A. Keep the batteries charged while on a mooring.
- B. Supplement current power generation capability. (Run my engine less to charge the batteries)
- C. Generate all the power needed while at anchor.




D. Generate all the power needed on passage and at anchor.

1. Determine daily power consumption

	Amps	Hours at	Hours on	Daily AH	Daily AH	
		Anchor	Passage	at Anchor	on Passage	
Refrigeration	5	6	6	30	30	
Radar	4		4	0	16	
Computer - Laptop	4	1	8	4	32	
Autopilot	1.5		8	0	12	
Cabin Lights (LED)	1	4		4	0	
Nav/Anchor Lights	0.2	10	10	2	2	
Stereo	1	3	3	3	3	
VHF Radio	0.5	8	8	4	4	
Instruments	1		8	0	8	
Pressure Water	6	0.25	0.1	1.5	0.6	
Phone Charger	1	2	2	2	2	
Other				0	0	
Other				0	0	
				50.5	109.6	

	Α	Amps		ours at	Hours on	Daily AH	Daily AH	
				nchor	Passage	at Anchor	on Passage	
Refrigeration		5		6	6	30	30	
Radar		4			4	0	16	
Computer - Laptop		4		1	8	4	32	
Autopilot		1.5			8	0	12	
Cabin Lights (LED)		1		4		4	0	
Nav/Anchor Lights		0.2		10	10	2	2	
Stereo		1		3	3	3	3	
VHF Radio		0.5		8	8	4	4	
Instruments		1			8	0	8	
Pressure Water		6		0.25	0.1	1.5	0.6	
Phone Charger		1		2	2	2	2	
Other						0	0	
Other						0	0	
						50.5	109.6	

	Α	Amps		Hours at Hours on		Daily AH	Daily AH		
				Anchor			assage	at Anchor	on Passage
Refrigeration		5			6		6	30	30
Radar		4					4	0	16
Computer - Laptop		4			1		8	4	32
Autopilot		1.5					8	0	12
Cabin Lights (LED)		1			4			4	0
Nav/Anchor Lights		0.2			10		10	2	2
Stereo		1			3		3	3	3
VHF Radio		0.5			8		8	4	4
Instruments		1					8	0	8
Pressure Water		6	j		0.25		0.1	1.5	0.6
Phone Charger		1			2		2	2	2
Other								0	0
Other								0	0
								50.5	109.6

	Α	mps	Н	Hours at		Но	urs on	Dail	у АН	Daily AH	
			Α	ncł	nor	Passage		at Ancher		on Passage	
Refrigeration		5			6		6		/ 30		30
Radar		4					4		0		16
Computer - Laptop		4			1		8		4		32
Autopilot		1.5					8		0		12
Cabin Lights (LED)		1			4				4		0
Nav/Anchor Lights		0.2			10		10		2		2
Stereo		1			3		3		3		3
VHF Radio		0.5			8		8		4		4
Instruments		1					8		0		8
Pressure Water		6			0.25		0.1		1.5		0.6
Phone Charger		1			2		2		2		2
Other									0		0
Other									0		0
									50.5		109.6

	Α	mps	Н	ours at	Hours	on		Daily AH	Daily AH	
			<u>A</u>	nchor	Pass	age	at	t Anchor	on Passage	
Refrigeration		5		6	6		30		3	
Radar		4				4		0		16
Computer - Laptop		4		1		8		4		32
Autopilot		1.5				8		0		12
Cabin Lights (LED)		1		4				4		0
Nav/Anchor Lights		0.2		10		10		2		2
Stereo		1		3		3		3		3
VHF Radio		0.5		8		8		4		4
Instruments		1				8		0		8
Pressure Water		6		0.25		0.1		1.5		0.6
Phone Charger		1		2		2		2		2
Other								0		0
Other								0		0
								50.5		109.6

Step 1

Amps	Hours at	Hours on	Daily AH	Daily AH
	Anchor	Passage	at Anchor	on Passage
5	6	6	30	30
4		4	0	16
4	1	8	4	32
1.5		8	0	12
1	4		4	0
0.2	10	10	2	2
1	3	3	3	3
0.5	8	8	4	4
1		8	0	8
6	0.25	0.1	1.5	0.6
1	2	2	2	2
			0	0
			Û	0
			50.5	109.6
ugh an	Inverter (N	Multiply by	1.2 for inverte	r inefficiency)
80	0.1		9.6	0
			0	0
			0	0
			0	0
			9.6	0
sumed p	er Day		60.1	109.6
	5 4 1.5 1 0.2 1 0.5 1 6 1	Anchor 5 6 4 1 1.5 1 4 0.2 10 1 3 0.5 8 1 6 0.25 1 2 Ough an Inverter (N	Anchor Passage 5 6 6 4 4 4 4 1 8 1.5 8 1 4 0.2 10 10 1 3 3 3 0.5 8 8 1 8 6 0.25 0.1 1 2 2 ough an Inverter (Multiply by 80 0.1	Anchor Passage at Anchor 5 6 6 30 4 1 8 4 1.5 8 0 0 1 4 4 4 0.2 10 10 2 1 3 3 3 0.5 8 8 4 1 8 0 0 6 0.25 0.1 1.5 1 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 9.6 0 0 9.6 0 0 9.6 0 0 9.6 0 0 9.6 0 0 9.6 0 0 9.6 0 0

Determine Solar Capacity Needed

Total Amp Hours Consumed per Day		60.1	109.6
Average Hours of Sun per Day	5		
Note: 5 is a good number for panels mounted	ed horizontal,		
7 for panels tilted and rotated.			
Rated Panel Amperage Needed (Immp)	.1/5= 12.0	21.9	
Panel Rated Voltage (Vmmp)	18		
Rated Panel Wattage Required (Watts)	18x1	2= 216.4	394.6

With MPPT Controller $14 \times 12 = 168$ Watts

306.6 watts

Watts = Volts x Amps

Determine Solar Capacity Needed

Total Amp Hours Consumed per Day	60.1	109.6	
Average Hours of Sun per Day	7		
Note: 5 is a good number for panels mounted	d horizontal	,	
7 for panels tilted and rotated.			
Rated Panel Amperage Needed (Immp)		60.1/7= 8.6	15.7
Panel Rated Voltage (Vmmp)	18		
Rated Panel Wattage Required (Watts)	18	x8.6= 154.5	281.8

Our Case Study Boat

Sample Power Consumption Worksheet

Available at
custommarine products.com

- Support
 - Manuals & Info

Consum	Pu	OII V	VOIIX	31166	1
	Amps	Hours at	Hours on	Daily AH	Daily AH
		Anchor	Passage	at Anchor	on Passage
Refrigeration	5	6	6	30	30
Radar	4		4	0	16
Computer - Laptop	4	1	8	4	32
Autopilot	1.5		8	0	12
Cabin Lights (LED)	1	4		4	0
Nav/Anchor Lights	0.2	10	10	2	2
Stereo	1	3	3	3	3
VHF Radio	0.5	8	8	4	4
Instruments	1		8	0	8
Pressure Water	6	0.25	0.1	1.5	0.6
Phone Charger	1	2	2	2	2
Other				0	0
Other				0	0
				50.5	109.6
Equipment going thro	ough an	Inverter (N	Multiply by	1.2 for inverte	r inefficiency)
Microwave	80	0.1		9.6	0
Windlass				0	0
Other				0	0
Other				0	0
				9.6	0
Total Amp Hours Cons	sumed p	er Day		60.1	109.6
AH - Amp Hours - Amp	s of curr	ent consum	ed in an hou	r	
Windlass is often not of	consider	ed because	engine alter	nator is running	g when used
Average Hours of Sun p	per Day		5		
Note: 5 is a good num	ber for p	anels moun	ted horizont	al,	
7 for panels tilte	ed and ro	otated.			
Rated Panel Amperag	e Neede	ed (Immp)		12.0	21.9
Panel Rated Voltage (\	/mmp)		18		
Rated Panel Wattage F	Required	(Watts)		216.4	394.6

Battery Bank Capacity in our Example

	At A	Anchor	On Passage
Total Amp Hours Consumed per Day		60.1	109.6
Amp hours consumed per day		60	110
Days to run on batteries only	X	2	1.5
Amp hours required		120	165
Use 50% of battery bank capacity X 2			
Battery bank capacity needed (amp hours)		240	330
LiFePo4 Use 80% capacity X	2	150	206

Note: You can use 50% of your battery bank capacity and keep your bank healthy. (flooded)

Our Findings

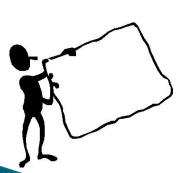
Generate All the Power Needed While at Anchor

Power consumption

60 to 110 amp hours

Optimum battery capacity

240 to 320 amp hours


Rated panel amperage needed

12 to 22 amps @ 5 hours sun avg.

8.6 to 16 amps @ 7 hours sun avg.

Rated panel wattage needed

216 to 395 watts

Watts = Volts x Amps

Solar

What Do You Want to Achieve with Your Solar System?

Panel Controller
Capacity Capacity

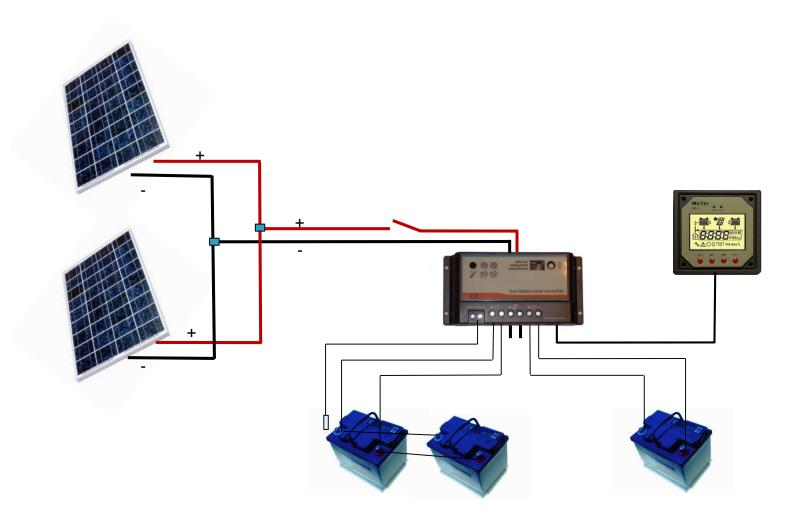
A. Keep the batteries charged while on a mooring

50 Watts 3 Amps

Solar

- B. Supplement current power generation capability
- 100 Watts 6 Amps
- C. Generate all the power needed while at anchor
- 216 Watts 12 Amps

D. Generate all the power needed on passage and at anchor


396 Watts 22 Amps

Controller Selection

Under 200 Watts PWM

Over 200 Watts MPPT or PWM

A Complete and Balanced Solar Power System

Solar Panel Power Requirement Worksheet

Power Consumption	on Anal	lysis			
	_	••		D 11 A11	- · · · · · · · · · · · · · · · · · · ·
	Amps	Hours at	Hours on	Daily AH	Daily AH
		Anchor	Passage	at Anchor	on Passage
Refrigeration	5	6	6	30	30
Radar	4		4	0	16
Computer - Laptop	4	1	8	4	32
Autopilot	1.5		8	0	12
Cabin Lights (LED)	1	4		4	0
Nav/Anchor Lights	0.2	10	10	2	2
Stereo	1	3	3	3	3
VHF Radio	0.5	8	8	4	4
Instruments	1		8	0	8
Pressure Water	6	0.25	0.1	1.5	0.6
Phone Charger	1	2	2	2	2
Other				0	0
Other				0	0
				50.5	109.6
Equipment going thro	ough an	Inverter (I	Multiply by	1.2 for inverte	r inefficiency)
Microwave	80	0.1		9.6	0
Windlass				0	0
Other				0	0
Other				0	0
				9.6	0
Total Amp Hours Con	sumed p	er Day		60.1	109.6

n

- 2. Assess your battery capacity
- 3. Calculate solar amps needed
- 4. Calculate solar watts needed
- 5. Select solar panel(s) and controller

Solar Panel Capacity (Wat				
		Scenarios		
	Α	В	С	D
Power Consumed per Day	30	60	60	110
Days at Anchor	1	3	3	1
Amp Hrs Needed	30	180	180	110
Battery Bank Rated Amp Hrs.	240	240	240	240
Battery Draw Down %	0%	40%	0%	0%
Battery Amps Drawn	-	96	-	-
Amp Hr. Deficit	30	84	180	110
Amp Hr. Deficit per Day	30	28	60	110
Hours of Sun	5.0	5.0	5.0	7.0
Solar Panel Amps(Imp) Needed	6.0	5.6	12.0	15.7
Solar Panel Voltage (Vmp)	18.0	18.0	18.0	22.0
Solar Panel Watts Needed				
With PWM Controller	108	101	216	346
With MPPT Controller	90	84	180	236

- A. On a mooring with refrigeration
- 109.61 B. 3 days at anchor supplement with 40% of battery capacity
 - C. 3 days at anchor no battery supplement
 - D. All power from solar with max power usage

East and Midwest

Tom Trimmer custommarineproducts.com tom@custommarineproducts.com 248 705 8337

Bob Dickey firstmatemarine.com fmmarine@olypen.com 360 301 5968

West Coast

	Amps	Hours at	Hours on	Daily AH	Daily AH
		Anchor	Passage	at Anchor	on Passage
Refrigeration	5	6	6	30	30
Radar	4		4	0	16
Computer - Laptop	4	1	8	4	32
Autopilot	1.5		8	0	12
Cabin Lights (LED)	1	4		4	0
Nav/Anchor Lights	0.2	10	10	2	2
Stereo	1	3	3	3	3
VHF Radio	0.5	8	8	4	4
Instruments	1		8	0	8
Pressure Water	6	0.25	0.1	1.5	0.6
Phone Charger	1	2	2	2	2
Other				0	0
Other				0	0
				50.5	109.6
Equipment going thro	ugh an	Inverter (Mu	ultiply by 1.	2 for inverter	inefficiency)
Microwave	80	0.1		9.6	0
Windlass				0	0
Other				0	0
Other				0	0
				9.6	0
Total Amp Hours Cons	sumed p	per Day		60.1	109.6
AH - Amp Hours - Amps	of curr	ent consumed	l in an hour		
Windlass is often not o	onsider	ed because er	ngine alterna	ntor is running	when used
Average Hours of Sun p	er Day		5		
Note: 5 is a good num	per for p	anels mounte	ed horizontal	,	
7 for panels tilte	ed and ro	otated.			
Rated Panel Amperag	e Need	ed (Immp)		12.0	21.9
Panel Rated Voltage (V	mmp)		18		

12

High Performance Marine PV Solar Panel Specifications

Model	Nominal	Open	Short	Nominal	Nominal	Cell	Solar Cell	Cell	Panel	Weight	Amp Hrs
	Peak	Circuit	Circuit	Voltage	Power	Efficiency	Mfg. &	Layout	Size	lbs.	per Day
CMP	Power	Voltage	Current		Current	%	Type		Inches		@6 Hrs
Part Number	Watts-Wp	Voc	Isc	Vmp	Imp						Sun
Semi-flexible -	Monocrysta	lline									
CMP23055FW	55	23.4	3.1	19.8	2.9	22.0	SunPower	4 x 8	21.25x22.8	3.3	23.6
CMP23055FB	55	23.4	3.1	19.8	2.9	22.0	SunPower	4 x 8	21.25x22.8	3.3	23.6
CMP23070F	70	23.4	3.9	19.8	3.6	22.0	SunPower	4 x 5	21.25x27.75	3.8	30.0
CMP23110F	110	23.4	6.0	19.8	5.6	22.0	SunPower	4 x 8	21.25x42.3	5.8	47.1
CMP23120F	120	24.0	6.5	20.0	6.0	20.4	SunPower	4 x 10	22.0x53.7	6.1	51.4
CMP23130F	130	26.3	6.2	22.3	5.8	23.7	SunPower	4 x 9	21.25x47.25	5.2	55.7
CMP23150F	150/160	32.7	6.3	27.3	5.9	23.3	SunPower	4 x 11	21.25.0x57.5	6.6	68.6
Rigid - Monocry	/stalline										
CMP22100S	100	21.6	6.8	17.6	5.9	20.2	SunPower	4 x 8	21.3x41.7	20.3	35.4
CMP22140S	140	23.8	8.5	19.8	7.1	22.0	SunPower	5 x 8	26.8x41.7	22.0	60.0
CMP22150SR	150	29.3	7.0	24.8	6.5	22.8	SunPower	4 x 12	21.3x56.9	26.5	64.3
CMP22175S	175	36.4	6.3	30.3	5.8	22.8	SunPower	7 x 7	36.2x37	26.5	75.0
CMP21105M	105	21.6	6.5	17.5	6.0	17.9	Bosch	4 x 6	26.4x39.4	18.0	36.0
CMP21160M	160	21.6	9.9	17.5	9.1	18.4	Bosch	6 x 6	39x39.5	26.5	54.6
Rigid - Polycrys	talline										
CMP21100P	100	21.6	6.2	17.5	5.7	16.7	Q Cell	4 x 6	26.4x39.4	18.0	34.3
CMP21150P	150	21.9	9.2	17.6	8.5	17.1	Q Cell	6 x 6	39x39.5	26.5	51.0
CMP21160PK	160	21.9	9.7	17.6	9.0	18.0	Q Cell	4 x 9	26.3x59	26.5	54.0

Rigid Polycrystalline

Rigid Monocrystalline

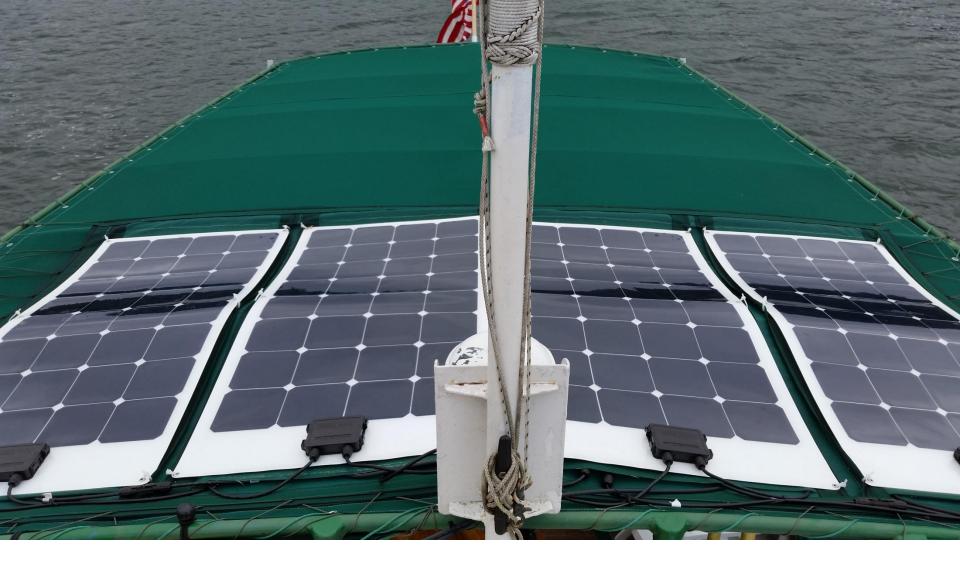
Solar Panel Installation Ideas

Semi-Flexible Solar Panels

- Canvas biminis
- Hard tops

Rigid Solar Panels

- Canvas biminis
- Hard tops
- Top-of-pole systems
- Dinghy davits


See **Gallery of Installations** at custommarine products.com for more ideas.

100 Watt Semi-flexible Panels Zippered On

Two 50 Watt Semi-flexible Panels Bolted On

Four 100 Watt Semi-flexible Panels Sewn On

Six 100 Watt Semi-flexible Panels Sewn On

Two 110 Watt Semi-flexible Panels Bolted On

110 Watt Semi-flexible Panel Bolted On

Gemini Mounting Bracket

Two Panels on a Bimini Mounted Frame

130 Watt Panel Rotated on a Bar

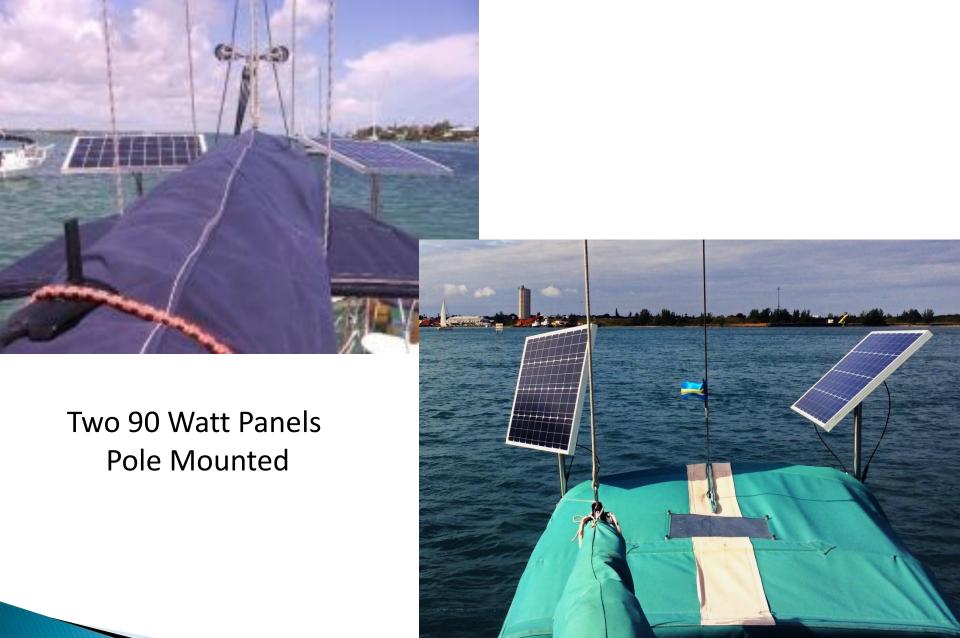
Three 120 Watt Solar Panels

Three 120 Watt Solar Panels on a Hylas 49

Two Rigid Panels Cantilevered

130 Watt Rigid Panel on a Ranger Tug 32

Two 275 Watt Panels on the Pilot House of a Nordic Tug 37


Four 100 Watt Rigid Panels on a Nordic Tug 32

160 Watt Panel on a Pole with Outboard Motor Crane Tilt and Rotate

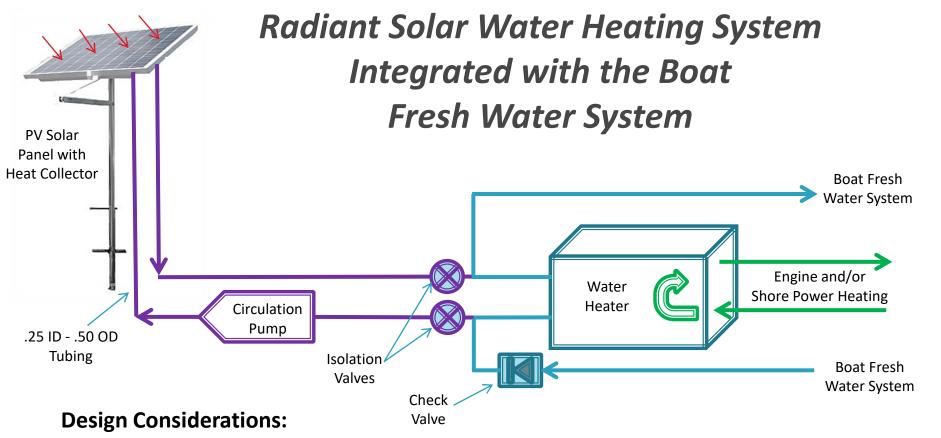
130 Watt Panel on a Pole Mount – Morgan 38

Use Your Solar Panel to Heat Water on Your Boat

Install our unique heat collector on the back of your solar panel and use the **sun's radiant energy** to heat water for showers and dish washing.

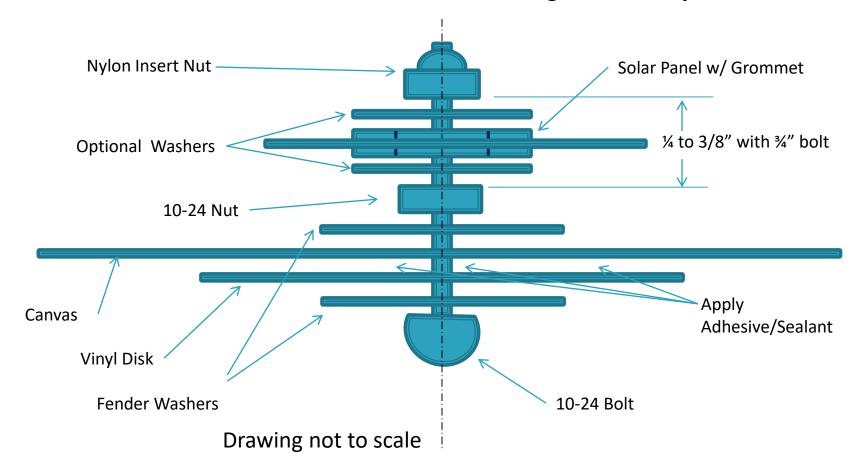
You no longer need to run your engine at anchor to heat water.

Solar heater can be integrated directly into your boat's water system.


Highly efficient circulating pump moves water from the solar heat collector to your water heater.

Kits are available for all CMP panels and many other brands.

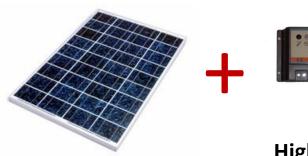
* Kits include: heat collector, insulation, panel backing, pump, tubing.


† Easy DIY installation.

Heat water to 115° F+.

- 1. Heat collector is mounted behind the solar panel.
- 2. Boat water heater is used for storage of warmed water.
- 3. Circulation pump can be turned on and off manually.
- 4. Solar panel is tilted and rotated for maximum heating efficiency.

Flexible Solar Panel Canvas Mounting Kit Assembly



custommarineproducts.com info@custommarineproducts.com 248 705 8337

Complete top-of-pole solar panel kits contain everything you need to install solar power on your boat.

High Efficiency
Dual Output Solar
Controller and
Solar Wire

Tilt and Rotate
Mounting Hardware for
Optimum Sun Angle

A. Keep the batteries charged while on a mooring

- Nothing running but bilge pump 30-50 watt panel
- Refrigeration 30 amp hours 110 watt panel
- PWM controller

B. Supplement current power generation capability at anchor (Run my engine every 3 days to charge the batteries)

Power consumed 60 AH/day
Days at anchor X 3 Days
Amp hrs. needed = 180 AH

B. Supplement current power generation capability at anchor (Run my engine every 3 days to charge the batteries)

Power consumed 60 AH/day
Days at anchor X 3 Days
Amp hrs. needed = 180 AH

Battery capacity (40%) - 96 AH

Amp hr. deficit = 84 AH

Amp hr. deficit per day = 28 AH

B. Supplement current power generation capability at anchor (Run my engine every 3 days to charge the batteries)

Power consumed	60	AH/day
Days at anchor	X 3	Days
Amp hrs. needed	= 180	AH
Battery capacity @40%) - 96	AH
Amp hr. deficit	= 84	AH
Amp hr. deficit per day	= 28	AH
Hours of sun	/ 5	Hrs
Solar amps needed	= 5.6	Amps
Solar panel voltage	X 18	Volts
Solar Panel capacity	= 100	Watts

B. Supplement current power generation capability at anchor (Run my engine every 3 days to charge the batteries)

Power consumed	60	70 AH/day
Days at anchor	X 3	3 Days
Amp hrs. needed	= 180	210 AH
Battery capacity @50%	- 120	120 AH
Amp hr. deficit	= 60	90 AH
Amp hr. deficit per day	= 20	30 AH
Hours of sun	/ 5	4 Hrs
Solar amps needed	= 4	7.5 Amps
Solar panel voltage	X 18	18 Volts
Solar Panel capacity	= 72	135 Watts

B. Supplement current power generation capability at anchor (Run my engine every 3 days to charge the batteries)

Power consumed	60	70 AH/day
Days at anchor	X 3	3 Days
Amp hrs. needed	= 180	210 AH
Battery capacity @50%	- 120	120 AH
Amp hr. deficit	= 60	90 AH
Amp hr. deficit per day	= 20	30 AH
Hours of sun	/ 5	4 Hrs
Solar amps needed	= 4	7.5 Amps
Solar panel voltage	X 18	18 Volts
Solar Panel capacity	= 72	135 Watts

C. Generate all the power needed while at anchor for an extended period of time

Power consumed	60	60 AH/day	
Days at anchor	X 3	1 Days	
Amp hrs. needed	= 180	60 AH	
Battery capacity @50%	- 120	120 AH	
Amp hr. deficit	= 60	60 AH	
Amp hr. deficit per day	= 20	60 AH	
Hours of sun	/ 5	5 Hrs	
Solar amps needed	= 4	12 Amps	
Solar panel voltage	X 18	18 Volts	
Solar Panel capacity	= 72	216 Watts	

C. Generate all the power needed while at anchor for an extended period of time (Our Case Study Boat)

Power consumed	60	60 AH/day
Days at anchor	X 3	1 Days
Amp hrs. needed	= 180	60 AH
Battery capacity @50%	- 120	120 AH
Amp hr. deficit	= 60	60 AH
Amp hr. deficit per day	= 20	60 AH
Hours of sun	/ 5	7 Hrs
Solar amps needed	= 4	8.6 Amps
Solar panel voltage	X 18	18 Volts
Solar Panel capacity	= 72	154 Watts

D. Generate all the power needed while on passage and at anchor for an extended period of time

Power consumed	60	110 AH/day
Days at anchor	X 3	1 Days
Amp hrs. needed	= 180	110 AH
Battery capacity @50%	- 120	120 AH
Amp hr. deficit	= 60	110 AH
Amp hr. deficit per day	= 20	110 AH
Hours of sun	/ 5	5 Hrs
Solar amps needed	= 4	22 Amps
Solar panel voltage	X 18	18 Volts
Solar Panel capacity	= 72	396 Watts